Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12137
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKeresteci, E.-
dc.contributor.authorBulut, M.E.-
dc.contributor.authorAkgun, M.B.-
dc.contributor.authorTavli, V.B.-
dc.date.accessioned2025-03-22T20:56:05Z-
dc.date.available2025-03-22T20:56:05Z-
dc.date.issued2024-
dc.identifier.isbn9798331518035-
dc.identifier.urihttps://doi.org/10.1109/ELECO64362.2024.10847099-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12137-
dc.description.abstractSpatio-temporal finger-printing is an active research topic, which is of critical importance in mobility analysis. Various neural network models working on LBSN data have been presented within the framework of TUL (Trajectory-user linking). However, to the best of our knowledge, there are no studies on neural networks for sequential spatio-temporal data like GPS in the literature. Therefore, here we present the STSeqGNN model, which can process sequential spatiotemporal data. Our model can process the graph structure of the map and the time dimension of the data. Our model also can use movement information and basic statistical values for better finger-printing performance. We present our test results with the evaluation metric accuracy at k. Our model achieves more than 99% accuracy across different datasets. © 2024 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofElectrical-Electronics and Biomedical Engineering Conference, ELECO 2024 - Proceedings -- 2024 Electrical, Electronics and Biomedical Engineering Conference at 15th National Conference on Electrical and Electronics Engineering, ELECO 2024 -- 28 November 2024 through 30 November 2024 -- Bursa -- 206315en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleStseqgnn - Konum-zaman Tabanli Hareket Karakterizasyonuen_US
dc.typeConference Objecten_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.scopus2-s2.0-85217837112-
dc.identifier.doi10.1109/ELECO64362.2024.10847099-
dc.authorscopusid59558805300-
dc.authorscopusid59279339800-
dc.authorscopusid36936068600-
dc.authorscopusid59558679700-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.fulltextNo Fulltext-
item.languageiso639-1tr-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.grantfulltextnone-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.