Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/12017
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kaleli, Inci Sila | - |
dc.contributor.author | Unal, Perin | - |
dc.contributor.author | Deveci, Bilgin Umut | - |
dc.contributor.author | Albayrak, Ozlem | - |
dc.date.accessioned | 2025-01-10T21:01:49Z | - |
dc.date.available | 2025-01-10T21:01:49Z | - |
dc.date.issued | 2024 | - |
dc.identifier.isbn | 9798331527204 | - |
dc.identifier.isbn | 9798331527198 | - |
dc.identifier.issn | 2996-1009 | - |
dc.identifier.uri | https://doi.org/10.1109/FiCloud62933.2024.00030 | - |
dc.description.abstract | CNC (Computer Numerical Control) machines are vital for precision and efficiency in manufacturing but are prone to tool wear, causing disruptions and sustainability challenges. This study introduces a project aimed at sustainable CNC tool management within the circular economy framework, focusing on extending tool lifespan through predictive analytics. Real-time monitoring predicts optimal tool replacement times, promoting reuse, repair, and recycling. The methodology includes data collection, preprocessing, anomaly detection, real-time analysis, and machine learning model selection, with the Random Forest model proving most effective. Unique contributions include the integration of advanced sensor data with AI-driven predictive maintenance, and the application of circular economy principles to CNC tool management. The results highlight significant accuracy in tool condition categorization, contributing to waste reduction and sustainable practices in manufacturing. | en_US |
dc.description.sponsorship | European Union [873111] | en_US |
dc.description.sponsorship | This study was conducted by TEKNOPAR and supported partially by the DigiPrime project. DigiPrime was funded by the European Union's Horizon 2020 research and innovation programme under GA No. 873111 | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE Computer Soc | en_US |
dc.relation.ispartof | 11th International Conference on Future Internet of Things and Cloud -- AUG 19-21, 2024 -- Vienna, AUSTRIA | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Sustainability | en_US |
dc.subject | Circular Economy | en_US |
dc.subject | Condition Monitoring | en_US |
dc.subject | Predictive Maintenance | en_US |
dc.title | A Tool Condition Monitoring Study To Support Circular Economy | en_US |
dc.type | Conference Object | en_US |
dc.relation.ispartofseries | International Conference on Future Internet of Things and Cloud | - |
dc.department | TOBB University of Economics and Technology | en_US |
dc.identifier.startpage | 146 | en_US |
dc.identifier.endpage | 151 | en_US |
dc.identifier.wos | WOS:001423331500022 | - |
dc.identifier.scopus | 2-s2.0-85211225264 | - |
dc.identifier.doi | 10.1109/FiCloud62933.2024.00030 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
dc.description.woscitationindex | Conference Proceedings Citation Index - Science | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.