Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12017
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaleli, I.S.-
dc.contributor.authorUnal, P.-
dc.contributor.authorDeveci, B.U.-
dc.contributor.authorAlbayrak, O.-
dc.date.accessioned2025-01-10T21:01:49Z-
dc.date.available2025-01-10T21:01:49Z-
dc.date.issued2024-
dc.identifier.isbn979-833152719-8-
dc.identifier.urihttps://doi.org/10.1109/FiCloud62933.2024.00030-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12017-
dc.description.abstractCNC (Computer Numerical Control) machines are vital for precision and efficiency in manufacturing but are prone to tool wear, causing disruptions and sustainability challenges. This study introduces a project aimed at sustainable CNC tool management within the circular economy framework, focusing on extending tool lifespan through predictive analytics. Real-time monitoring predicts optimal tool replacement times, promoting reuse, repair, and recycling. The methodology includes data collection, preprocessing, anomaly detection, real-time analysis, and machine learning model selection, with the Random Forest model proving most effective. Unique contributions include the integration of advanced sensor data with AI-driven predictive maintenance, and the application of circular economy principles to CNC tool management. The results highlight significant accuracy in tool condition categorization, contributing to waste reduction and sustainable practices in manufacturing. © 2024 IEEE.en_US
dc.description.sponsorshipEuropean Union s Horizon 2020 research and innovation programme, (873111)en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings - 2024 11th International Conference on Future Internet of Things and Cloud, FiCloud 2024 -- 11th International Conference on Future Internet of Things and Cloud, FiCloud 2024 -- 19 August 2024 through 21 August 2024 -- Hybrid, Vienna -- 204091en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCircular Economyen_US
dc.subjectCondition Monitoringen_US
dc.subjectPredictive Maintenanceen_US
dc.subjectSustainabilityen_US
dc.titleA Tool Condition Monitoring Study To Support Circular Economyen_US
dc.typeConference Objecten_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.startpage146en_US
dc.identifier.endpage151en_US
dc.identifier.scopus2-s2.0-85211225264-
dc.identifier.doi10.1109/FiCloud62933.2024.00030-
dc.authorscopusid59296346800-
dc.authorscopusid56396952700-
dc.authorscopusid57350944900-
dc.authorscopusid23392070500-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairetypeConference Object-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.