Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/12014
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Akin, S.E. | - |
dc.contributor.author | Akgun, T. | - |
dc.date.accessioned | 2025-01-10T21:01:48Z | - |
dc.date.available | 2025-01-10T21:01:48Z | - |
dc.date.issued | 2024 | - |
dc.identifier.isbn | 978-151068100-2 | - |
dc.identifier.issn | 0277-786X | - |
dc.identifier.uri | https://doi.org/10.1117/12.3037131 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/12014 | - |
dc.description | HGH Infrared Systems; Leonardo MW Ltd.; Photon Lines Ltd.; Pro-Lite Technology Ltd.; Thales; The Society of Photo-Optical Instrumentation Engineers (SPIE) | en_US |
dc.description.abstract | Infrared (IR) imaging sensors designed to acquire the 0.9-14 micrometers wavelength band offer unique advantages over the daylight cameras for a multitude of consumer, industrial and defense applications. However, IR images lack natural color information and can be quite challenging to interpret without sensor specific training. As a result, transforming IR images into perceptually realistic color images is a valuable research problem with a substantial potential for commercial value. Recently, various research works that use deep neural networks to colorize single mode (near or thermal) infrared images have been reported. In this paper, we present a novel convolutional auto-encoder architecture that takes multiple images captured with different imaging modes (near IR, thermal IR and low-light) to perform colorization using the visual cues that exist in all imaging modes. We present visual results demonstrating that using multiple IR imaging modes improves the overall visual quality of the results. © 2024 SPIE. | en_US |
dc.language.iso | en | en_US |
dc.publisher | SPIE | en_US |
dc.relation.ispartof | Proceedings of SPIE - The International Society for Optical Engineering -- Artificial Intelligence and Image and Signal Processing for Remote Sensing XXX 2024 -- 16 September 2024 through 18 September 2024 -- Edinburgh -- 204594 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Auto-Encoder | en_US |
dc.subject | Colorization | en_US |
dc.subject | Convolutional | en_US |
dc.subject | Infrared | en_US |
dc.subject | Thermal | en_US |
dc.title | Multi-Mode Infrared Image Colorization | en_US |
dc.type | Conference Object | en_US |
dc.department | TOBB University of Economics and Technology | en_US |
dc.identifier.volume | 13196 | en_US |
dc.identifier.scopus | 2-s2.0-85212402811 | - |
dc.identifier.doi | 10.1117/12.3037131 | - |
dc.authorscopusid | 59254147300 | - |
dc.authorscopusid | 9273895500 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q4 | - |
dc.identifier.wosquality | N/A | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairetype | Conference Object | - |
crisitem.author.dept | 02.3. Department of Computer Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.