Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/1188
Title: Optimal Base Station Mobility Patterns for Wireless Sensor Network Lifetime Maximization
Authors: Çayırpınar, Ömer
Ürtiş, Esra Kadıoğlu
Tavlı, Bülent
Keywords: Wireless Sensor Networks
Sink Mobility
Mobility Patterns
Optimal Sink Location
Mobile Robotics
Mixed İnteger Programming
Energy Efficiency
Publisher: IEEE-INST Electrical Electronics Engineers Inc.
Source: Cayirpunar, O., Kadioglu-Urtis, E., & Tavli, B. (2015). Optimal base station mobility patterns for wireless sensor network lifetime maximization. IEEE Sensors Journal, 15(11), 6592-6603.
Abstract: Maximization of network lifetime through the efficient utilization of energy is one of the main objectives in wireless sensor network (WSN) design. Although energy balancing throughout the network for relaying the data traffic generated by sensor nodes toward a static base station prolongs network lifetime, some of the nodes are required to dissipate their energies suboptimally, i.e., farther nodes transmit some of their data to extended distances so that nodes closer to the base station are not overburdened. Base station mobility is proposed as a remedy for countering the suboptimal energy dissipation trends in WSNs. As the base station relocates, the burden of relaying the data coming from all nodes can be shared by a larger set of nodes, and hence, suboptimal energy dissipation can be mitigated. In order to take advantage of base station mobility for prolonging WSN lifetime, determining the optimal mobility patterns is of utmost importance. In this paper, we built a mixed integer programming framework to characterize the impact of various mobility patterns on WSN lifetime. Our results reveal that optimal Gaussian and spiral mobility patterns give the highest network lifetime values throughout the parameter space we explored.
URI: https://ieeexplore.ieee.org/document/7174944
https://hdl.handle.net/20.500.11851/1188
ISSN: 1530-437X
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

SCOPUSTM   
Citations

44
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

35
checked on Dec 21, 2024

Page view(s)

94
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.