Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11857
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGüven M.-
dc.date.accessioned2024-11-10T14:56:03Z-
dc.date.available2024-11-10T14:56:03Z-
dc.date.issued2024-
dc.identifier.issn2149-9144-
dc.identifier.urihttps://doi.org/10.22399/ijcesen.469-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11857-
dc.description.abstractIn response to the escalating complexity of cyber threats and the rapid expansion of digital environments, traditional detection models are proving increasingly inadequate. The advent of Large Language Models (LLMs) powered by Natural Language Processing (NLP) represents a transformative advancement in cyber security. This review explores the burgeoning landscape of LLM applications in cyber security, highlighting their significant potential across various threat detection domains. Recent advancements have demonstrated LLMs' efficacy in enhancing tasks such as cyber threat intelligence, phishing detection, anomaly detection through log analysis, and more. By synthesizing recent literature, this paper provides a comprehensive overview of how LLMs are reshaping cyber security frameworks. It also discusses current challenges and future directions, aiming to guide researchers and practitioners in leveraging LLMs effectively to fortify digital defences and mitigate evolving cyber threats. © IJCESEN.en_US
dc.language.isoenen_US
dc.publisherProf.Dr. İskender AKKURTen_US
dc.relation.ispartofInternational Journal of Computational and Experimental Science and Engineeringen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectCyber Securityen_US
dc.subjectLarge Language Modelsen_US
dc.subjectMachine Learningen_US
dc.subjectMalware Analysisen_US
dc.titleA Comprehensive Review of Large Language Models in Cyber Securityen_US
dc.typeReviewen_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume10en_US
dc.identifier.issue3en_US
dc.identifier.startpage507en_US
dc.identifier.endpage516en_US
dc.identifier.scopus2-s2.0-85206578198en_US
dc.institutionauthorGüven M.-
dc.identifier.doi10.22399/ijcesen.469-
dc.authorscopusid56343141800-
dc.relation.publicationcategoryDiğeren_US
item.openairetypeReview-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Dec 21, 2024

Page view(s)

60
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.