Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11853
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPasabeyoglu, Pelin-
dc.contributor.authorDeniz, Erdem-
dc.contributor.authorMoumin, Gkiokchan-
dc.contributor.authorSay, Zafer-
dc.contributor.authorAkata, Burcu-
dc.date.accessioned2024-11-10T14:56:02Z-
dc.date.available2024-11-10T14:56:02Z-
dc.date.issued2024-
dc.identifier.issn0959-6526-
dc.identifier.issn1879-1786-
dc.identifier.urihttps://doi.org/10.1016/j.jclepro.2024.143838-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11853-
dc.description.abstractThis study presents the environmentally sustainable synthesis of zeolites from solar-calcined kaolin and halloysite, emphasizing their application in CO2 capture due to their distinctive porous structures and chemical attributes. Expanding upon prior research that utilized solar energy for kaolin calcination, we now explore halloysite as an alternative clay mineral for zeolite production and CO2 capture. Employing a solar simulator, halloysite was calcined at temperatures ranging from 700 to 1000 degrees C, resulting in the synthesis of zeolites 4A and 13X via hydrothermal methods. The synthesized zeolites were characterized using X-ray diffraction (XRD), low angle XRD (LA-XRD), transmission electron microscopy (TEM), and field-emission scanning electron microscopy (FE-SEM), and Brunauer-Emmett-Teller (BET) surface area measurements. Notably, the presence of Al-Si spinel, which crystallizes at elevated solar calcination temperatures, persisted within the zeolite 13X matrix, inducing a secondary mesoporous phase. The observed hysteresis in 13X samples, rather than confirming the mesoporous character of zeolite 13X, indicates a tandem effect of mesoporous Al-Si spinel with microporous zeolite 13X, exemplifying systems known as micro/mesoporous zeolitic composites (MZCs). The correlation obtained between the interplanar distances calculated from LA-XRD and pore size distributions acquired from the BJH desorption branches highlights LA-XRD as an alternative analysis method for assessing mesoporosity. While the microporosity of Al-Si spinel possessing 13X samples positively correlates with CO2 capture performance, mesoporosity appears to have minimal impact. Among the zeolites synthesized using solar energy, zeolite 4A (LTA) demonstrates superior CO2 capture capability, achieving an adsorption capacity of 2.15 mmol/g at 25 degrees C and 1 bar. This study highlights the potential of solar energy in producing eco-friendly zeolites from kaolin and halloysite for improved CO2 capture, advancing sustainable environmental solutions.en_US
dc.description.sponsorshipEuropean Union's Horizon 2020 Research and Innovation programme [856619]; METU-Central Laboratoryen_US
dc.description.sponsorshipThe European Union's Horizon 2020 Research and Innovation programme, under grant agreement no. 856619, has funded this project. We gratefully acknowledge the support provided by METU-Central Laboratory.en_US
dc.language.isoenen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.ispartofJournal of Cleaner Productionen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectKaolinen_US
dc.subjectHalloysiteen_US
dc.subjectSolar calcinationen_US
dc.subjectCO 2 captureen_US
dc.subjectGreen zeoliteen_US
dc.subjectLta Zeolitesen_US
dc.subjectIntracrystalline Mesoporosityen_US
dc.subjectSpinel Phaseen_US
dc.subjectAdsorptionen_US
dc.subjectSizeen_US
dc.subject13xen_US
dc.subjectCrystallizationen_US
dc.subjectPorosityen_US
dc.titleSolar-driven calcination of clays for sustainable zeolite production: CO2 capture performance at ambient conditionsen_US
dc.typeArticleen_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume477en_US
dc.authoridAkata Kurc, Burcu/0000-0002-4337-5537-
dc.identifier.wosWOS:001333897500001en_US
dc.identifier.scopus2-s2.0-85205447644en_US
dc.institutionauthor-
dc.identifier.doi10.1016/j.jclepro.2024.143838-
dc.authorwosidPasabeyoglu, Pelin/ITU-8790-2023-
dc.authorwosidAkata, Burcu/ABA-1602-2020-
dc.authorscopusid58296951900-
dc.authorscopusid59351696700-
dc.authorscopusid57204769330-
dc.authorscopusid53880342700-
dc.authorscopusid17344894400-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept02.6. Department of Material Science and Nanotechnology Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.