Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/11846
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Unal, P. | - |
dc.contributor.author | Hatipoglu, O. I. | - |
dc.contributor.author | Turker, A. | - |
dc.contributor.author | Unal, A. F. | - |
dc.contributor.author | Deveci, B. U. | - |
dc.contributor.author | Kirci, P. | - |
dc.contributor.author | Özbayoğlu, Ahmet Murat | - |
dc.date.accessioned | 2024-11-10T14:56:02Z | - |
dc.date.available | 2024-11-10T14:56:02Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 2050-7038 | - |
dc.identifier.uri | https://doi.org/10.1155/2024/5548146 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/11846 | - |
dc.description.abstract | This survey provides a comprehensive review of underwater cable detection and tracking literature, identifying key problem types and highlighting unique underwater challenges. It emphasizes the critical role of underwater cable detection in global communications and energy infrastructures, addressing complexities like low visibility and variable sea conditions. The analysis compares the efficacy of various models, particularly deep learning approaches like CNNs and Transformers, in adapting to underwater imagery challenges. A new roadmap for efficient cable detection and tracking systems is proposed, focusing on multimodal data integration and nonoptical detection methods. Importantly, the study includes performance evaluations of state-of-the-art models on custom underwater datasets, offering practical insights. The survey's findings are validated through an implementation of an underwater object-tracking model incorporating effective algorithms from the literature. | en_US |
dc.description.sponsorship | Horizon 2020 Framework Programme; European Union | en_US |
dc.description.sponsorship | This study was funded by the European Union H2020 MarTERA ERA-NET Cofund project, FLOW-CAM, Floating Offshore Wind Turbine Cable Monitoring. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Wiley | en_US |
dc.relation.ispartof | International Transactions on Electrical Energy Systems | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Object Detection | en_US |
dc.subject | System | en_US |
dc.subject | Classification | en_US |
dc.title | Comparative Analysis and Performance Evaluation of Underwater Cable Detection and Tracking Techniques: a Comprehensive Survey | en_US |
dc.type | Article | en_US |
dc.department | TOBB ETU Artificial Intelligence Engineering | en_US |
dc.identifier.volume | 2024 | en_US |
dc.authorid | Ozbayoglu, Murat/0000-0001-7998-5735 | - |
dc.authorid | Deveci, Bilgin Umut/0000-0002-0644-0782 | - |
dc.authorid | Unal, Perin/0000-0003-1357-2430 | - |
dc.identifier.wos | WOS:001321352400001 | - |
dc.identifier.scopus | 2-s2.0-85206284820 | - |
dc.institutionauthor | Özbayoğlu, Ahmet Murat | - |
dc.identifier.doi | 10.1155/2024/5548146 | - |
dc.authorwosid | Ünal, Perin/IWV-3011-2023 | - |
dc.authorwosid | Ozbayoglu, Murat/H-2328-2011 | - |
dc.authorscopusid | 56396952700 | - |
dc.authorscopusid | 58071968700 | - |
dc.authorscopusid | 58686048200 | - |
dc.authorscopusid | 59365882500 | - |
dc.authorscopusid | 57350944900 | - |
dc.authorscopusid | 15026635000 | - |
dc.authorscopusid | 59365963200 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q2 | - |
dc.identifier.wosquality | Q3 | - |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
crisitem.author.dept | 02.1. Department of Artificial Intelligence Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection Yapay Zeka Mühendisliği Bölümü / Department of Artificial Intelligence Engineering |
CORE Recommender
SCOPUSTM
Citations
1
checked on Mar 29, 2025
Page view(s)
54
checked on Mar 31, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.