Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11816
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTok, Y.E.-
dc.contributor.authorDemirtas, A.M.-
dc.date.accessioned2024-10-10T15:47:48Z-
dc.date.available2024-10-10T15:47:48Z-
dc.date.issued2024-
dc.identifier.isbn979-835035185-9-
dc.identifier.urihttps://doi.org/10.1109/BlackSeaCom61746.2024.10646214-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11816-
dc.descriptionIEEE Communications Societyen_US
dc.description12th IEEE International Black Sea Conference on Communications and Networking, BlackSeaCom 2024 -- 24 June 2024 through 27 June 2024 -- Tbilisi -- 202272en_US
dc.description.abstractIntelligent Reflecting Surface (IRS) is a cost-effective technology for future wireless communication systems to achieve high spectrum and energy efficiency. If the IRS elements are adjusted properly, the surface can provide a power gain proportional to the square of the number of IRS elements. Optimizing the phase shifts of IRS elements is a challenging task since they are not equipped with active RF chains. Previous studies have mostly assumed that the phase shifts of the elements take continuous values, which is practically difficult to implement due to hardware constraints. In addition, a large number of elements at the IRS may result in substantial training overhead. The study presents a Deep Learning approach for configuring discrete phase shifts of IRS elements. The proposed method uses the pilot signals reflected by the IRS as the model input and provides the optimum discrete phase shift values as its output. The model is trained using different lengths of pilot symbol blocks, and numerical results are presented. © 2024 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2024 IEEE International Black Sea Conference on Communications and Networking, BlackSeaCom 2024en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep Learning (DL); discrete phase shifts; Intelligent Reflecting Surface (IRS)en_US
dc.subjectFederated learning; Cost-effective technology; Deep learning; Discrete phase; Discrete phase shift; Intelligent reflecting surface; Overhead reductions; Reflecting surface; Shift-and; Surface elements; Wireless communication system; Deep learningen_US
dc.titleOptimizing Intelligent Reflecting Surfaces With Discrete Phase Shifts and Pilot Overhead Reduction Using Deep Learningen_US
dc.typeConference Objecten_US
dc.departmentTOBB ETÜen_US
dc.identifier.startpage292en_US
dc.identifier.endpage295en_US
dc.identifier.wosWOS:001310519400053en_US
dc.identifier.scopus2-s2.0-85203829867en_US
dc.institutionauthor-
dc.identifier.doi10.1109/BlackSeaCom61746.2024.10646214-
dc.authorscopusid59254176300-
dc.authorscopusid25651426700-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

16
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.