Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/11800
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bulut, M.E. | - |
dc.contributor.author | Keleş, K.E. | - |
dc.contributor.author | Kutlu, M. | - |
dc.date.accessioned | 2024-09-22T13:30:58Z | - |
dc.date.available | 2024-09-22T13:30:58Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 1613-0073 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/11800 | - |
dc.description | 25th Working Notes of the Conference and Labs of the Evaluation Forum, CLEF 2024 -- 9 September 2024 through 12 September 2024 -- Grenoble -- 201493 | en_US |
dc.description.abstract | This paper presents our participation in the CLEF2024 CheckThat! Lab's Task-1 which focuses on determining whether passages from tweets or transcriptions are check-worthy. Task 1 covers three languages including English, Arabic, and Dutch. We propose utilizing several different instruct-tuned large language models (LLM) and aggregating their results for the Dutch dataset. In English and Arabic datasets, in addition to LLMs, we also use a fine-tuned XLM-R classifier. Our proposed method is ranked first in the Dutch dataset, fourth in the Arabic dataset, and eleventh in the English dataset. © 2024 Copyright for this paper by its authors. | en_US |
dc.language.iso | en | en_US |
dc.publisher | CEUR-WS | en_US |
dc.relation.ispartof | CEUR Workshop Proceedings | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Check-Worthiness | en_US |
dc.subject | In Context Learning | en_US |
dc.subject | LLM | en_US |
dc.subject | Prompt Engineering | en_US |
dc.subject | Check-worthiness | en_US |
dc.subject | Context learning | en_US |
dc.subject | Fine tuning | en_US |
dc.subject | Hybrid approach | en_US |
dc.subject | In context learning | en_US |
dc.subject | In contexts | en_US |
dc.subject | Language model | en_US |
dc.subject | Large language model | en_US |
dc.subject | Prompt engineering | en_US |
dc.title | Turquaz at Checkthat! 2024: a Hybrid Approach of Fine-Tuning and In-Context Learning for Check-Worthiness Estimation | en_US |
dc.type | Conference Object | en_US |
dc.department | TOBB ETÜ | en_US |
dc.identifier.volume | 3740 | en_US |
dc.identifier.startpage | 369 | en_US |
dc.identifier.endpage | 377 | en_US |
dc.identifier.scopus | 2-s2.0-85201620598 | en_US |
dc.institutionauthor | … | - |
dc.authorscopusid | 59279339800 | - |
dc.authorscopusid | 58770155500 | - |
dc.authorscopusid | 35299304300 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.