Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11799
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaleli, I.S.-
dc.contributor.authorUnal, P.-
dc.contributor.authorDeveci, B.U.-
dc.contributor.authorAlbayrak, O.-
dc.contributor.authorOzbayoglu, A.M.-
dc.date.accessioned2024-09-22T13:30:58Z-
dc.date.available2024-09-22T13:30:58Z-
dc.date.issued2024-
dc.identifier.isbn978-303168004-5-
dc.identifier.issn0302-9743-
dc.identifier.urihttps://doi.org/10.1007/978-3-031-68005-2_18-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11799-
dc.description20th International Conference on Mobile Web and Intelligent Information Systems, MobiWIS 2024 -- 19 August 2024 through 21 August 2024 -- Vienna -- 317059en_US
dc.description.abstractThis study proposes a cutting tool condition monitoring platform for CNC machines used in metal part manufacturing to estimate tool wear values. The PHM 2010 Dataset, along with operational and situational data from CNC machines and sensors, were analyzed using artificial intelligence algorithms to support total equipment performance with current tool wear values. The innovation lies in developing an artificial intelligence application that incorporates the Federated Learning method with artificial neural networks. This application is among the first to monitor machine cutting tools using Federated Learning. An efficient and accurate predictive tool wear estimation method is presented through the application of Federated Learning with Long-Short Term Memory models. This novel approach holds great potential for industrial applications, optimizing CNC cutting processes and reducing operational costs through enhanced tool wear prediction. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.en_US
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK, (118C581); Horizon 2020 Framework Programme, H2020, (952003)en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectcondition monitoringen_US
dc.subjectfederated learningen_US
dc.subjectIndustry 4.0en_US
dc.subjectpredictive maintenanceen_US
dc.subjecttool wearen_US
dc.subjectCutting toolsen_US
dc.subjectCNC machineen_US
dc.subjectConditionen_US
dc.subjectLearning studiesen_US
dc.subjectMetal partsen_US
dc.subjectMonitoring platformen_US
dc.subjectPart manufacturingen_US
dc.subjectPredictive maintenanceen_US
dc.subjectTool condition monitoringen_US
dc.subjectTool wearen_US
dc.subjectTool wear estimationsen_US
dc.subjectPredictive maintenanceen_US
dc.titleA Domain-Aware Federated Learning Study for Cnc Tool Wear Estimationen_US
dc.typeConference Objecten_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume14792 LNCSen_US
dc.identifier.startpage250en_US
dc.identifier.endpage265en_US
dc.identifier.scopus2-s2.0-85201978804en_US
dc.institutionauthor-
dc.identifier.doi10.1007/978-3-031-68005-2_18-
dc.authorscopusid59296346800-
dc.authorscopusid56396952700-
dc.authorscopusid57350944900-
dc.authorscopusid23392070500-
dc.authorscopusid57947593100-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

66
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.