Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11790
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAad, G.-
dc.contributor.authorAakvaag, E.-
dc.contributor.authorAbbott, B.-
dc.contributor.authorAbdelhameed, S.-
dc.contributor.authorAbeling, K.-
dc.contributor.authorAbicht, N.J.-
dc.contributor.authorAbidi, S.H.-
dc.date.accessioned2024-09-22T13:30:57Z-
dc.date.available2024-09-22T13:30:57Z-
dc.date.issued2024-
dc.identifier.issn2632-2153-
dc.identifier.urihttps://doi.org/10.1088/2632-2153/ad611e-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11790-
dc.description.abstractThe energy and mass measurements of jets are crucial tasks for the Large Hadron Collider experiments. This paper presents a new calibration method to simultaneously calibrate these quantities for large-radius jets measured with the ATLAS detector using a deep neural network (DNN). To address the specificities of the calibration problem, special loss functions and training procedures are employed, and a complex network architecture, which includes feature annotation and residual connection layers, is used. The DNN-based calibration is compared to the standard numerical approach in an extensive series of tests. The DNN approach is found to perform significantly better in almost all of the tests and over most of the relevant kinematic phase space. In particular, it consistently improves the energy and mass resolutions, with a 30% better energy resolution obtained for transverse momenta pT > 500 GeV. © 2024 The Author(s). Published by IOP Publishing Ltd.en_US
dc.language.isoenen_US
dc.publisherInstitute of Physicsen_US
dc.relation.ispartofMachine Learning: Science and Technologyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectATLASen_US
dc.subjectcalibrationsen_US
dc.subjectCERN jetsen_US
dc.subjectdetectoren_US
dc.subjectColliding beam acceleratorsen_US
dc.subjectDeep neural networksen_US
dc.subjectHadronsen_US
dc.subjectJet aircraften_US
dc.subjectJetsen_US
dc.subjectKinematicsen_US
dc.subjectLinear acceleratorsen_US
dc.subjectPhotonsen_US
dc.subjectATLASen_US
dc.subjectATLAS detectorsen_US
dc.subjectCERN jeten_US
dc.subjectEnergyen_US
dc.subjectEnergy calibrationen_US
dc.subjectEnergy resolutionsen_US
dc.subjectMass calibrationsen_US
dc.subjectMass measurementsen_US
dc.subjectMeasurements ofen_US
dc.subjectNeural-networksen_US
dc.subjectPhase space methodsen_US
dc.titleSimultaneous Energy and Mass Calibration of Large-Radius Jets With the Atlas Detector Using a Deep Neural Networken_US
dc.typeArticleen_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume5en_US
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85203423356en_US
dc.institutionauthor-
dc.identifier.doi10.1088/2632-2153/ad611e-
dc.authorscopusid26326745400-
dc.authorscopusid58475641900-
dc.authorscopusid35226946900-
dc.authorscopusid59090912500-
dc.authorscopusid57210132793-
dc.authorscopusid58179773000-
dc.authorscopusid56536227400-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

26
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.