Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11785
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCai, T.-
dc.contributor.authorWang, Q.-
dc.contributor.authorZhang, S.-
dc.contributor.authorDemir, O.T.-
dc.contributor.authorCavdar, C.-
dc.date.accessioned2024-09-22T13:30:57Z-
dc.date.available2024-09-22T13:30:57Z-
dc.date.issued2024-
dc.identifier.isbn979-835034319-9-
dc.identifier.urihttps://doi.org/10.1109/ICMLCN59089.2024.10624787-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11785-
dc.description1st IEEE International Conference on Machine Learning for Communication and Networking, ICMLCN 2024 -- 5 May 2024 through 8 May 2024 -- Stockholm -- 201880en_US
dc.description.abstractWe develop a multi-agent reinforcement learning (MARL) algorithm to minimize the total energy consumption of multiple massive MIMO (multiple-input multiple-output) base stations (BSs) in a multi-cell network while preserving the overall quality-of-service (QoS) by making decisions on the multi-level advanced sleep modes (ASMs) and antenna switching of these BSs. The problem is modeled as a decentralized partially observable Markov decision process (DEC-POMDP) to enable collaboration between individual BSs, which is necessary to tackle inter-cell interference. A multi-agent proximal policy optimization (MAPPO) algorithm is designed to learn a collaborative BS control policy. To enhance its scalability, a modified version called MAPPO-neighbor policy is further proposed. Simulation results demonstrate that the trained MAPPO agent achieves better performance compared to baseline policies. Specifically, compared to the auto sleep mode 1 (symbol-level sleeping) algorithm, the MAPPO-neighbor policy reduces power consumption by approximately 8.7% during low-traffic hours and improves energy efficiency by approximately 19% during high-traffic hours, respectively. © 2024 IEEE.en_US
dc.description.sponsorshipVINNOVA; Swedish Innovation Agencyen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2024 IEEE International Conference on Machine Learning for Communication and Networking, ICMLCN 2024en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectantenna switchingen_US
dc.subjectBS control for energy savingen_US
dc.subjectmassive MIMOen_US
dc.subjectmulti-agent reinforcement learningen_US
dc.subjectEnergy efficiencyen_US
dc.subjectEnergy utilizationen_US
dc.subjectReinforcement learningen_US
dc.subjectSleep researchen_US
dc.subjectAntenna switchingen_US
dc.subjectBase station control for energy savingen_US
dc.subjectEnergy savingsen_US
dc.subjectEnergy-savingsen_US
dc.subjectMassive multiple-input multiple-outputen_US
dc.subjectMulti agenten_US
dc.subjectMulti-agent reinforcement learningen_US
dc.subjectMultiple inputsen_US
dc.subjectMultiple outputsen_US
dc.subjectPolicy optimizationen_US
dc.subjectMarkov processesen_US
dc.titleMulti-Agent Reinforcement Learning for Energy Saving in Multi-Cell Massive Mimo Systemsen_US
dc.typeConference Objecten_US
dc.departmentTOBB ETÜen_US
dc.identifier.startpage480en_US
dc.identifier.endpage485en_US
dc.identifier.wosWOS:001307813600081en_US
dc.identifier.scopus2-s2.0-85202434656en_US
dc.institutionauthor-
dc.identifier.doi10.1109/ICMLCN59089.2024.10624787-
dc.authorscopusid58726118000-
dc.authorscopusid58893931800-
dc.authorscopusid57201675329-
dc.authorscopusid55807906700-
dc.authorscopusid24178594900-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

14
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.