Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11782
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTok, Y.E.-
dc.contributor.authorDemirtaş, A.M.-
dc.date.accessioned2024-09-22T13:30:28Z-
dc.date.available2024-09-22T13:30:28Z-
dc.date.issued2024-
dc.identifier.isbn979-835038896-1-
dc.identifier.urihttps://doi.org/10.1109/SIU61531.2024.10600714-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11782-
dc.descriptionBerdan Civata B.C.; et al.; Figes; Koluman; Loodos; Tarsus Universityen_US
dc.description32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 -- 15 May 2024 through 18 May 2024 -- Mersin -- 201235en_US
dc.description.abstractIntelligent Reflective Surface (IRS), is a cost-effective technology suitable for achieving high spectrum and energy efficiency in future wireless communication systems. If the elements of an IRS are adjusted correctly, a power gain is provided that is directly proportional to the square of the number of elements. Configuring the elements of an IRS is a challenging task, and prior works have mostly assumed that the elements' phase shifts take continuous values. This paper investigates a wireless communication system in which the IRS phase shifts can only take a finite number of values. This study presents a Deep Learning approach for configuring discrete phase shifts of IRS elements. The proposed method uses the pilot signals reflected by the IRS as the model input and provides the optimum phase shift values as its output. © 2024 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 - Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep Learningen_US
dc.subjectIntelligent Reflecting Surfacesen_US
dc.subjectDeep learningen_US
dc.subjectEnergy efficiencyen_US
dc.subjectContinuous valueen_US
dc.subjectCost-effective technologyen_US
dc.subjectDeep learningen_US
dc.subjectDiscrete phaseen_US
dc.subjectIntelligent reflecting surfaceen_US
dc.subjectPower gainsen_US
dc.subjectReflecting surfaceen_US
dc.subjectReflective surfacesen_US
dc.subjectSurface phasisen_US
dc.subjectWireless communication systemen_US
dc.subjectCost effectivenessen_US
dc.titleDiscrete Phase Reconfiguration of Intelligent Reflecting Surfaces via Deep Learningen_US
dc.title.alternativeDerin Öğrenme Yoluyla Akıllı Yansıtıcı Yüzeylerin Fazlarının Ayrık Olarak Yapılandırılmasıen_US
dc.typeConference Objecten_US
dc.departmentTOBB ETÜen_US
dc.identifier.scopus2-s2.0-85200851805en_US
dc.institutionauthor-
dc.identifier.doi10.1109/SIU61531.2024.10600714-
dc.authorscopusid59254176300-
dc.authorscopusid25651426700-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeConference Object-
item.languageiso639-1tr-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

6
checked on Nov 11, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.