Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11781
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNassehi, Farhad-
dc.contributor.authorPar, Asuhan-
dc.contributor.authorEken, Aykut-
dc.contributor.authorYetkin, Sinan-
dc.contributor.authorErogul, Osman-
dc.date.accessioned2024-09-22T13:30:28Z-
dc.date.available2024-09-22T13:30:28Z-
dc.date.issued2024-
dc.identifier.isbn9798350388978-
dc.identifier.isbn9798350388961-
dc.identifier.issn2165-0608-
dc.identifier.urihttps://doi.org/10.1109/SIU61531.2024.10600753-
dc.description.abstractDepression is a prevalent mental disorder that affects the mood of patients and is generally diagnosed by paper-based questionnaires. Nowadays combining machine learning and Electroencephalogram (EEG) are more popular to diagnose depression. This study proposes a novel method that only focuses on the connectivity of the Alpha band. 22 Depression patients and 25 healthy control subjects were attended in EEG recording in eyes closed and eyes open condition. After the pre-processing step, the phase lag index (PLI) values between EEG channels were calculated. The Extreme Gradient Boosting (XGB) classifier was used to detect depression. The maximum performance with a 95.22%+/- 1.76% accuracy rate, 94.09%+/- 2.15 recall, and 96.08%+/- 2.54% specificity rate was reached when only eyes-closed values were used as inputs of the classifier. Performance of the classifier for ten selected pathways using explainability analysis of features with the Shapley Additive explanation (SHAP) method decreased to 93.12%+/- 1.73% accuracy rate, 92.92%+/- 1.4% recall, and 94.57%+/- 2.78% specificity rate.en_US
dc.language.isoenen_US
dc.publisherIeeeen_US
dc.relation.ispartof32nd IEEE Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2024 -- Tarsus Univ Campus, Mersin, TURKEYen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDepressionen_US
dc.subjectPhase Lag Indexen_US
dc.subjectExtreme Gradient Boostingen_US
dc.subjectExplainable Aien_US
dc.subjectShapen_US
dc.titleDefining the Optimal Alpha Band Connectivity Pathways To Detect Depression Using Explainable Aien_US
dc.typeConference Objecten_US
dc.relation.ispartofseriesSignal Processing and Communications Applications Conference-
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.wosWOS:001297894700032-
dc.identifier.scopus2-s2.0-85200836469-
dc.institutionauthor-
dc.identifier.doi10.1109/SIU61531.2024.10600753-
dc.authorwosidYETKİN, SİNAN/JVP-2317-2024-
dc.authorwosidEken, Aykut/S-7559-2018-
dc.authorwosidNassehi, Farhad/JAN-4974-2023-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
dc.description.woscitationindexConference Proceedings Citation Index - Science-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.grantfulltextnone-
crisitem.author.dept02.2. Department of Biomedical Engineering-
crisitem.author.dept02.2. Department of Biomedical Engineering-
Appears in Collections:Biyomedikal Mühendisliği Bölümü / Department of Biomedical Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

48
checked on Mar 31, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.