Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11781
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNassehi, F.-
dc.contributor.authorPar, A.-
dc.contributor.authorEken, A.-
dc.contributor.authorYetkin, S.-
dc.contributor.authorEroğul, O.-
dc.date.accessioned2024-09-22T13:30:28Z-
dc.date.available2024-09-22T13:30:28Z-
dc.date.issued2024-
dc.identifier.isbn979-835038896-1-
dc.identifier.urihttps://doi.org/10.1109/SIU61531.2024.10600753-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11781-
dc.descriptionBerdan Civata B.C.; et al.; Figes; Koluman; Loodos; Tarsus Universityen_US
dc.description32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 -- 15 May 2024 through 18 May 2024 -- Mersin -- 201235en_US
dc.description.abstractDepression is a prevalent mental disorder that affects the mood of patients and is generally diagnosed by paper-based questionnaires. Nowadays combining machine learning and Electroencephalogram (EEG) are more popular to diagnose depression. This study proposes a novel method that only focuses on the connectivity of the Alpha band. 22 Depression patients and 25 healthy control subjects were attended in EEG recording in eyes closed and eyes open condition. After the pre-processing step, the phase lag index (PLI) values between EEG channels were calculated. The Extreme Gradient Boosting (XGB) classifier was used to detect depression. The maximum performance with a 95.22%±1.76% accuracy rate, 94.09%±2.15 recall, and 96.08%±2.54% specificity rate was reached when only eyes-closed values were used as inputs of the classifier. Performance of the classifier for ten selected pathways using explainability analysis of features with the Shapley Additive explanation (SHAP) method decreased to 93.12%±1.73% accuracy rate, 92.92%±1.4% recall, and 94.57%±2.78% specificity rate. © 2024 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 - Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDepressionen_US
dc.subjectExplainable AIen_US
dc.subjectExtreme Gradient Boostingen_US
dc.subjectPhase Lag Indexen_US
dc.subjectSHAPen_US
dc.subjectArtificial intelligenceen_US
dc.subjectAccuracy rateen_US
dc.subjectDepressionen_US
dc.subjectExplainable AIen_US
dc.subjectExtreme gradient boostingen_US
dc.subjectGradient boostingen_US
dc.subjectPerformanceen_US
dc.subjectPhase lag indexen_US
dc.subjectPhase lagsen_US
dc.subjectShapleyen_US
dc.subjectShapley additive explanationen_US
dc.subjectElectroencephalographyen_US
dc.titleDefining the Optimal Alpha Band Connectivity Pathways To Detect Depression Using Explainable Aien_US
dc.typeConference Objecten_US
dc.departmentTOBB ETÜen_US
dc.identifier.scopus2-s2.0-85200836469en_US
dc.institutionauthor-
dc.identifier.doi10.1109/SIU61531.2024.10600753-
dc.authorscopusid57210944631-
dc.authorscopusid57223243461-
dc.authorscopusid35100314400-
dc.authorscopusid56211425100-
dc.authorscopusid56247443100-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

22
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.