Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/11778
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sahin, Bora Mert | - |
dc.contributor.author | Sanli, Suveyda | - |
dc.contributor.author | Erdogan, Kubra | - |
dc.contributor.author | Durmus, Mahmut Esad | - |
dc.contributor.author | Kara, Ozgur | - |
dc.contributor.author | Kaymak, Bayram | - |
dc.contributor.author | Eken, Aykut | - |
dc.date.accessioned | 2024-09-22T13:30:28Z | - |
dc.date.available | 2024-09-22T13:30:28Z | - |
dc.date.issued | 2024 | - |
dc.identifier.isbn | 9798350388978 | - |
dc.identifier.isbn | 9798350388961 | - |
dc.identifier.issn | 2165-0608 | - |
dc.identifier.uri | https://doi.org/10.1109/SIU61531.2024.10600840 | - |
dc.description.abstract | Sarcopenia, a disease defined by the loss of muscle mass and function, plays a significant role in the quality of life of the elderly. Recent studies suggest that the loss of muscle strength and function associated with sarcopenia may be linked to neural control mechanisms. This study aimed to find a neuro-cognitive biomarker for sarcopenia and to classify it using fNIRS and machine learning methods. Connectivity matrices created from fNIRS data obtained from the Hand Grip experiment, conducted on 50 participants (27 controls, 23 sarcopenic), were used as features in the classification. This resulted in the Linear SVM model showing the highest performance with an 87.4% accuracy rate and 0.94 AUC value. These results indicate that functional connectivity data obtained through fNIRS could serve as an objective biomarker for sarcopenia classification, and that high-performance classification is feasible using this biomarker. | en_US |
dc.language.iso | tr | en_US |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | 32nd IEEE Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2024 -- Tarsus Univ Campus, Mersin, TURKEY | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Sarcopenia | en_US |
dc.subject | Fnirs | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Neurocognition | en_US |
dc.title | Identification of Neurological Markers of Sarcopenia Disease Using Functional Near-Infrared Spectroscopy and Machine Learning | en_US |
dc.title.alternative | Sarkopeni Hastalığının Nörolojik Belirteçlerinin İşlevsel Yakın Kızılaltı Spektroskopisi ve Makine Öğrenmesi Kullanılarak Belirlenmesi | en_US |
dc.type | Conference Object | en_US |
dc.relation.ispartofseries | Signal Processing and Communications Applications Conference | - |
dc.department | TOBB University of Economics and Technology | en_US |
dc.identifier.wos | WOS:001297894700102 | - |
dc.identifier.scopus | 2-s2.0-85200866905 | - |
dc.institutionauthor | … | - |
dc.identifier.doi | 10.1109/SIU61531.2024.10600840 | - |
dc.authorwosid | Eken, Aykut/S-7559-2018 | - |
dc.authorwosid | erdoğan, kübra/HLH-1326-2023 | - |
dc.authorwosid | kara, murat/HJY-4391-2023 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
dc.description.woscitationindex | Conference Proceedings Citation Index - Science | - |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | tr | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Conference Object | - |
item.grantfulltext | none | - |
crisitem.author.dept | 02.2. Department of Biomedical Engineering | - |
Appears in Collections: | Biyomedikal Mühendisliği Bölümü / Department of Biomedical Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.