Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11778
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSahin, Bora Mert-
dc.contributor.authorSanli, Suveyda-
dc.contributor.authorErdogan, Kubra-
dc.contributor.authorDurmus, Mahmut Esad-
dc.contributor.authorKara, Ozgur-
dc.contributor.authorKaymak, Bayram-
dc.contributor.authorEken, Aykut-
dc.date.accessioned2024-09-22T13:30:28Z-
dc.date.available2024-09-22T13:30:28Z-
dc.date.issued2024-
dc.identifier.isbn9798350388978-
dc.identifier.isbn9798350388961-
dc.identifier.issn2165-0608-
dc.identifier.urihttps://doi.org/10.1109/SIU61531.2024.10600840-
dc.description.abstractSarcopenia, a disease defined by the loss of muscle mass and function, plays a significant role in the quality of life of the elderly. Recent studies suggest that the loss of muscle strength and function associated with sarcopenia may be linked to neural control mechanisms. This study aimed to find a neuro-cognitive biomarker for sarcopenia and to classify it using fNIRS and machine learning methods. Connectivity matrices created from fNIRS data obtained from the Hand Grip experiment, conducted on 50 participants (27 controls, 23 sarcopenic), were used as features in the classification. This resulted in the Linear SVM model showing the highest performance with an 87.4% accuracy rate and 0.94 AUC value. These results indicate that functional connectivity data obtained through fNIRS could serve as an objective biomarker for sarcopenia classification, and that high-performance classification is feasible using this biomarker.en_US
dc.language.isotren_US
dc.publisherIeeeen_US
dc.relation.ispartof32nd IEEE Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2024 -- Tarsus Univ Campus, Mersin, TURKEYen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSarcopeniaen_US
dc.subjectFnirsen_US
dc.subjectMachine Learningen_US
dc.subjectNeurocognitionen_US
dc.titleIdentification of Neurological Markers of Sarcopenia Disease Using Functional Near-Infrared Spectroscopy and Machine Learningen_US
dc.title.alternativeSarkopeni Hastalığının Nörolojik Belirteçlerinin İşlevsel Yakın Kızılaltı Spektroskopisi ve Makine Öğrenmesi Kullanılarak Belirlenmesien_US
dc.typeConference Objecten_US
dc.relation.ispartofseriesSignal Processing and Communications Applications Conference-
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.wosWOS:001297894700102-
dc.identifier.scopus2-s2.0-85200866905-
dc.institutionauthor-
dc.identifier.doi10.1109/SIU61531.2024.10600840-
dc.authorwosidEken, Aykut/S-7559-2018-
dc.authorwosiderdoğan, kübra/HLH-1326-2023-
dc.authorwosidkara, murat/HJY-4391-2023-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
dc.description.woscitationindexConference Proceedings Citation Index - Science-
item.fulltextNo Fulltext-
item.languageiso639-1tr-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.grantfulltextnone-
crisitem.author.dept02.2. Department of Biomedical Engineering-
Appears in Collections:Biyomedikal Mühendisliği Bölümü / Department of Biomedical Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

32
checked on Mar 31, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.