Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/11776
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dayi, A. Burak | - |
dc.contributor.author | Tuna, Evren | - |
dc.date.accessioned | 2024-09-22T13:30:28Z | - |
dc.date.available | 2024-09-22T13:30:28Z | - |
dc.date.issued | 2024 | - |
dc.identifier.isbn | 9798350388978 | - |
dc.identifier.isbn | 9798350388961 | - |
dc.identifier.issn | 2165-0608 | - |
dc.identifier.uri | https://doi.org/10.1109/SIU61531.2024.10600936 | - |
dc.description.abstract | The increasing demand for advanced video-based services necessitates operators to ensure the most suitable network performance while also considering user satisfaction with the service. QoS provides significant insights on the network side to deliver satisfactory user experiences. On the other hand, QoE informs about how a given service is perceived from the user's perspective. The more advanced video-based services to be offered with the more complex structure of 6G increase the importance of mapping QoS to QoE. This paper presents an XGBoost-based method for predicting QoE based on UE-based, network-based, and application-based QoS measurements obtained from a real and live mobile network. The results indicate that XGBoost is an effective method for user experience estimation. | en_US |
dc.language.iso | tr | en_US |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | 32nd IEEE Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2024 -- Tarsus Univ Campus, Mersin, TURKEY | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Wireless Communication | en_US |
dc.subject | 6G | en_US |
dc.subject | Multimedia Systems | en_US |
dc.subject | Quality Of Service | en_US |
dc.subject | Quality Of Experience | en_US |
dc.subject | Decision Tree | en_US |
dc.subject | Xgboost | en_US |
dc.title | Xgboost-Based Qoe Prediction for Mobile Networks | en_US |
dc.title.alternative | Mobil Ağlar için Xgboost Tabanlı Qoe Tahmini | en_US |
dc.type | Conference Object | en_US |
dc.relation.ispartofseries | Signal Processing and Communications Applications Conference | - |
dc.department | TOBB University of Economics and Technology | en_US |
dc.identifier.wos | WOS:001297894700173 | - |
dc.identifier.scopus | 2-s2.0-85200916802 | - |
dc.institutionauthor | … | - |
dc.identifier.doi | 10.1109/SIU61531.2024.10600936 | - |
dc.authorwosid | TUNA, EVREN/KYQ-5379-2024 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
dc.description.woscitationindex | Conference Proceedings Citation Index - Science | - |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | tr | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Conference Object | - |
item.grantfulltext | none | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.