Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11776
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDayi, A. Burak-
dc.contributor.authorTuna, Evren-
dc.date.accessioned2024-09-22T13:30:28Z-
dc.date.available2024-09-22T13:30:28Z-
dc.date.issued2024-
dc.identifier.isbn9798350388978-
dc.identifier.isbn9798350388961-
dc.identifier.issn2165-0608-
dc.identifier.urihttps://doi.org/10.1109/SIU61531.2024.10600936-
dc.description.abstractThe increasing demand for advanced video-based services necessitates operators to ensure the most suitable network performance while also considering user satisfaction with the service. QoS provides significant insights on the network side to deliver satisfactory user experiences. On the other hand, QoE informs about how a given service is perceived from the user's perspective. The more advanced video-based services to be offered with the more complex structure of 6G increase the importance of mapping QoS to QoE. This paper presents an XGBoost-based method for predicting QoE based on UE-based, network-based, and application-based QoS measurements obtained from a real and live mobile network. The results indicate that XGBoost is an effective method for user experience estimation.en_US
dc.language.isotren_US
dc.publisherIeeeen_US
dc.relation.ispartof32nd IEEE Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2024 -- Tarsus Univ Campus, Mersin, TURKEYen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectWireless Communicationen_US
dc.subject6Gen_US
dc.subjectMultimedia Systemsen_US
dc.subjectQuality Of Serviceen_US
dc.subjectQuality Of Experienceen_US
dc.subjectDecision Treeen_US
dc.subjectXgboosten_US
dc.titleXgboost-Based Qoe Prediction for Mobile Networksen_US
dc.title.alternativeMobil Ağlar için Xgboost Tabanlı Qoe Tahminien_US
dc.typeConference Objecten_US
dc.relation.ispartofseriesSignal Processing and Communications Applications Conference-
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.wosWOS:001297894700173-
dc.identifier.scopus2-s2.0-85200916802-
dc.institutionauthor-
dc.identifier.doi10.1109/SIU61531.2024.10600936-
dc.authorwosidTUNA, EVREN/KYQ-5379-2024-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
dc.description.woscitationindexConference Proceedings Citation Index - Science-
item.fulltextNo Fulltext-
item.languageiso639-1tr-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.grantfulltextnone-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

38
checked on Mar 31, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.