Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11760
Title: Design and production of mesh patterned photoelectrode with maskless laser lithography and device performance of perovskite derived/ZnO NRAs based photodetector
Authors: Eroğlu, Ayşe Nur
Altaf, Çiğdem Tuç
Demirci Sankır, Nurdan
Sankır, Mehmet
Publisher: Springer
Abstract: This study reports the design and fabrication of environmentally friendly, portable, robust, and stable self-powered photoelectrochemical photodetector (PEC-PD) devices based on the heterojunction of ZnO nanorod arrays (NRA) in a mesh pattern and inorganic halide perovskites (IHP). First, the effects of distance between the center of lines in a mesh pattern on the material properties and device performance were revealed. The mesh patterned ZnO NRAs-based PEC-PD device exhibited a fast response time (tau rise/tau decay = 100/75 ms) under UV-light illumination with 367 nm of wavelength at no applied bias. The best-performing mesh pattern was then used as a sub-layer for lead-based CsPbBr3-CsPb2Br5 dual-phase and lead-free Cs2AgBiBr6 double perovskite to construct self-powered p-n junction and PEC-PD devices. Upon the deposition of Cs2AgBiBr6, the maximum photocurrent value was enhanced about 13.65 times as compared to mesh patterned pristine ZnO NRAs under AM 1.5 illumination at + 5 V of applied potential. Responsivity (RS) and Detectivity (D*) values of the mesh patterned pristine ZnO NRAs-based PD have been increased from 0.24 mAW-1 and 3.0 x 108 Jones to 3.08 mAW-1 and 7.63 x 108 Jones with Cs2AgBiBr6 layer, respectively. Furthermore, 69.18 mAW-1 of RS and 1.71 x 1010 Jones of D* value have been observed at 382 nm wavelength and + 5 V for mesh patterned ZnO NRAs/Cs2AgBiBr6 photoelectrode.
URI: https://doi.org/10.1007/s10854-024-13393-8
https://hdl.handle.net/20.500.11851/11760
ISSN: 0957-4522
1573-482X
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

Page view(s)

30
checked on Nov 11, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.