Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/1171
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPancaroglu, Doruk-
dc.contributor.authorTan, Mehmet-
dc.date.accessioned2019-06-26T07:40:35Z
dc.date.available2019-06-26T07:40:35Z
dc.date.issued2016
dc.identifier.citationPancaroglu, D., & Tan, M. (2016). Biological Network Derivation by Positive Unlabeled Learning Algorithms. Current Bioinformatics, 11(5), 531-536.en_US
dc.identifier.issn1574-8936
dc.identifier.urihttp://www.eurekaselect.com/143364/article-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/1171-
dc.description.abstractBackground: In cases where only a single group (or class) of samples is available for a given problem, positive unlabeled learning algorithms can be applied. One such case is the interactions between various biological/chemical entity pairs, where only the set of interacting entities can be collected, not the "non-interacting" ones. Objective: We aim to improve the performance of deriving protein-protein and protein-ligand interactions. We argue that the positive-unlabeled learning algorithms can be applied to this problem. Method: In this paper, we propose some modifications to two of the existing methods for protein-protein and protein-ligand interaction network derivation. First, we extend the algorithms to use Random Forests and then we devise an ensemble classifier from these two based on voting. Results: We report the evaluation results of the proposed algorithms in comparison to the original methods and well-known biological network derivation algorithms. We achieved significant improvements in terms of different metrics. Conclusion: The results are promising in the sense that proposed methods either perform competitively or better than previous methods. This motivates us in applying the proposed methods to other data sets and similar problems.en_US
dc.language.isoenen_US
dc.publisherBentham Bcience Publ. Ltd.en_US
dc.relation.ispartofCurrent Bioinformaticsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBinary Classificationen_US
dc.subjectPositive Unlabeled Learningen_US
dc.subjectProtein-Ligand İnteraction Networksen_US
dc.subjectProtein-Protein İnteraction Networksen_US
dc.subjectRandom Forestsen_US
dc.subjectSupport Vector Machinesen_US
dc.titleBiological Network Derivation by Positive Unlabeled Learning Algorithmsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.volume11
dc.identifier.issue5
dc.identifier.startpage531
dc.identifier.endpage536
dc.authorid0000-0002-1741-0570-
dc.identifier.wosWOS:000390342000005en_US
dc.identifier.scopus2-s2.0-84995969135en_US
dc.institutionauthorTan, Mehmet-
dc.identifier.doi10.2174/1574893611666160617093509-
dc.authorwosidI-2328-2019-
dc.authorscopusid36984623900-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ4-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

186
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.