Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11711
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Z.-
dc.contributor.authorTopal, O.A.-
dc.contributor.authorDemir, O.T.-
dc.contributor.authorBjörnson, E.-
dc.contributor.authorCavdar, C.-
dc.date.accessioned2024-08-18T17:23:07Z-
dc.date.available2024-08-18T17:23:07Z-
dc.date.issued2024-
dc.identifier.isbn979-835030358-2-
dc.identifier.issn1525-3511-
dc.identifier.urihttps://doi.org/10.1109/WCNC57260.2024.10570594-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11711-
dc.description25th IEEE Wireless Communications and Networking Conference, WCNC 2024 -- 21 April 2024 through 24 April 2024 -- Dubai -- 200793en_US
dc.description.abstractIn this paper, we investigate how metasurfaces can be deployed to deliver high data rates in a millimeter-wave (mmWave) indoor dense space with many blocking objects. These surfaces can either be static metasurfaces (SMSs) that reflect with fixed phase-shifts or reconfigurable intelligent surfaces (RISs) that can reconfigure their phase-shifts to the currently served user. The latter comes with an increased power, cabling, and signaling cost. To see how reconfigurability affects the network performance, we propose an iterative algorithm based on the feasible point pursuit successive convex approximation method. We jointly optimize the types and phase-shifts of the surfaces and the time portion allocated to each user equipment to maximize the minimum data rate achieved by the network. Our numerical results demonstrate that the minimum data rate improves as more RISs are introduced but the gain diminishes after some point. Therefore, introducing more reconfigurability is not always necessary. Another result shows that to reach the same data rate achieved by using 22 SMSs, at least 18 RISs are needed. This suggests that when it is costly to deploy many RISs, as an inexpensive alternative solution, one can reach the same data rate just by densely deploying more SMSs. © 2024 IEEE.en_US
dc.description.sponsorship6G; Horizon 2020; ECSEL, (876124); VINNOVA, (2020- 1.2.3-EUREKA-2021-000006)en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofIEEE Wireless Communications and Networking Conference, WCNCen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectindoor dense spacesen_US
dc.subjectmmWave communicationen_US
dc.subjectray tracingen_US
dc.subjectreconfigurable intelligent surfaceen_US
dc.subjectApproximation algorithmsen_US
dc.subjectIterative methodsen_US
dc.subjectBlockingsen_US
dc.subjectData-rateen_US
dc.subjectHigh data rateen_US
dc.subjectHigh data-ratesen_US
dc.subjectIndoor dense spaceen_US
dc.subjectMetasurfaceen_US
dc.subjectMillimeterwave communicationsen_US
dc.subjectReconfigurabilityen_US
dc.subjectReconfigurableen_US
dc.subjectReconfigurable intelligent surfaceen_US
dc.subjectMillimeter wavesen_US
dc.titleMixed Static and Reconfigurable Metasurface Deployment in Indoor Dense Spaces: How Much Reconfigurability is Needed?en_US
dc.typeConference Objecten_US
dc.departmentTOBB ETÜen_US
dc.identifier.scopus2-s2.0-85198853000en_US
dc.institutionauthor-
dc.identifier.doi10.1109/WCNC57260.2024.10570594-
dc.authorscopusid58119708000-
dc.authorscopusid57190742811-
dc.authorscopusid55807906700-
dc.authorscopusid24478602800-
dc.authorscopusid24178594900-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

290
checked on Sep 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.