Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/1168
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTan, Mehmet-
dc.date.accessioned2019-06-26T07:40:35Z
dc.date.available2019-06-26T07:40:35Z
dc.date.issued2017-
dc.identifier.citationTan, M. (2017). Edge distance graph kernel and its application to small molecule classification. Turkish Journal of Electrical Engineering & Computer Sciences, 25(3), 2479-2490.en_US
dc.identifier.issn1300-0632-
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/247764-
dc.identifier.urihttp://journals.tubitak.gov.tr/elektrik/issues/elk-17-25-3/elk-25-3-69-1603-323.pdf-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/1168-
dc.description.abstractGraph classification is an important problem in graph mining with various applications in different fields. Kernel methods have been successfully applied to this problem, recently producing promising results. A graph kernel that mostly specifies classification performance has to be defined in order to apply kernel methods to a graph classification problem. Although there are various previously proposed graph kernels, the problem is still worth investigating, as the available kernels are far from perfect. In this paper, we propose a new graph kernel based on a recently proposed concept called edge distance-k graphs. These new graphs are derived from the original graph and have the potential to be used as novel graph descriptors. We propose a method to convert these graphs into a multiset of strings that is further used to compute a kernel for graphs. The proposed graph kernel is then evaluated on various data sets in comparison to a recently proposed group of graph kernels. The results are promising, both in terms of performance and computational requirements.en_US
dc.language.isoenen_US
dc.publisherTUBITAK Scientific & Technical Research Council Turkeyen_US
dc.relation.ispartofTurkish Journal Of Electrical Engineering And Computer Sciencesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGraph Kernelsen_US
dc.subjectGraph Classificationen_US
dc.subjectChemical Compound Classificationen_US
dc.titleEdge Distance Graph Kernel and Its Application To Small Molecule Classificationen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume25en_US
dc.identifier.issue3en_US
dc.identifier.startpage2479en_US
dc.identifier.endpage2490en_US
dc.authorid0000-0002-1741-0570-
dc.identifier.wosWOS:000404385700069-
dc.identifier.scopus2-s2.0-85020745899-
dc.institutionauthorTan, Mehmet-
dc.identifier.doi10.3906/elk-1603-323-
dc.authorwosidI-2328-2019-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
dc.identifier.trdizinidTWpRM056WTBOQT09-
dc.identifier.trdizinid247764-
dc.identifier.wosqualityQ4-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

118
checked on Mar 3, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.