Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11684
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKorkmaz,M.E.-
dc.contributor.authorGupta,M.K.-
dc.contributor.authorSarikaya,M.-
dc.contributor.authorGünay,M.-
dc.contributor.authorBoy,M.-
dc.contributor.authorYaşar,N.-
dc.contributor.authorPehlivan,F.-
dc.date.accessioned2024-07-24T11:57:23Z-
dc.date.available2024-07-24T11:57:23Z-
dc.date.issued2024-
dc.identifier.issn2193-567X-
dc.identifier.urihttps://doi.org/10.1007/s13369-024-09163-7-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11684-
dc.description.abstractInformation technology applications are crucial to the proper utilization of manufacturing equipment in the new industrial age, i.e., Industry 4.0. There are certain fundamental conditions that users must meet to adapt the manufacturing processes to Industry 4.0. For this, as in the past, there is a major need for modeling and simulation tools in this industrial age. In the creation of industry-driven predictive models for machining processes, substantial progress has recently been made. This paper includes a comprehensive review of predictive performance models for machining (particularly analytical models), as well as a list of existing models' strengths and drawbacks. It contains a review of available modeling tools, as well as their usability and/or limits in the monitoring of industrial machining operations. The goal of process models is to forecast principal variables such as stress, strain, force, and temperature. These factors, however, should be connected to performance outcomes, i.e., product quality and manufacturing efficiency, to be valuable to the industry (dimensional accuracy, surface quality, surface integrity, tool life, energy consumption, etc.). Industry adoption of cutting models depends on a model's ability to make this connection and predict the performance of process outputs. Therefore, this review article organizes and summarizes a variety of critical research themes connected to well-established analytical models for machining processes. © The Author(s) 2024.en_US
dc.description.sponsorshipPolısh Natıonal Agency For Academıc Exchange; Norwegian Financial Mechanism, (2020/37/K/ST8/02795); Narodowa Agencja Wymiany Akademickiej, NAWA, (PPN/ULM/2020/1/00121); Narodowa Agencja Wymiany Akademickiej, NAWAen_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.relation.ispartofArabian Journal for Science and Engineeringen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAnalytical modelingen_US
dc.subjectChip formationen_US
dc.subjectCutting forceen_US
dc.subjectMachiningen_US
dc.subjectModeling approachesen_US
dc.titleAnalytical Modeling Methods in Machining: a State of the Art on Application, Recent Challenges, and Future Trendsen_US
dc.typeReviewen_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume49en_US
dc.identifier.issue8en_US
dc.identifier.startpage10287en_US
dc.identifier.endpage10326en_US
dc.identifier.scopus2-s2.0-85195522959en_US
dc.identifier.doi10.1007/s13369-024-09163-7-
dc.authorscopusid57192559147-
dc.authorscopusid57072254700-
dc.authorscopusid56501650100-
dc.authorscopusid8537022100-
dc.authorscopusid16315072600-
dc.authorscopusid57193323121-
dc.authorscopusid57208280906-
dc.relation.publicationcategoryDiğeren_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ2-
item.openairetypeReview-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

82
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.