Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11651
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYilmaz, Muhammed-
dc.contributor.authorKeskin, Mustafa Mert-
dc.contributor.authorOzbayoglu, Ahmet Murat-
dc.date.accessioned2024-07-21T18:45:43Z-
dc.date.available2024-07-21T18:45:43Z-
dc.date.issued2024-
dc.identifier.issn1568-4946-
dc.identifier.issn1872-9681-
dc.identifier.urihttps://doi.org/10.1016/j.asoc.2024.111847-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11651-
dc.descriptionOzbayoglu, Murat/0000-0001-7998-5735en_US
dc.description.abstractFinancial forecasting is generally implemented by analyzing the time series data related to the stock. This is accomplished widely with deep neural networks (DNNs) since DNNs can directly extract the related information that is otherwise hard to obtain. Time series is the core data representation of financial forecasting problem since it comes naturally. However recent studies show that even if time series representation is necessary, it still lacks certain aspects related to the problem. One of them is the relationship between the stocks of the market which can be captured through graph representation. Therefore, DNNs might solve the financial forecasting problem better when graph and time series representations are combined. In this study, we present different graph representations that can be used for this purpose. We also present an ensemble network that gives an investment strategy related to the stock market from stock predictions. Our proposed model returns an average of 20.09% annual profit on DOW30 dataset through daily buy-sell decisions based on close prices. Therefore, it can serve as a daily financial investment strategy, offering higher annual returns than conventional heuristic approaches.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFinancial forecastingen_US
dc.subjectStock marketen_US
dc.subjectGraphsen_US
dc.subjectDeep learningen_US
dc.subjectDeep neural networksen_US
dc.subjectConvolutional neural networksen_US
dc.subjectEnsemble modelsen_US
dc.titleAlgorithmic Stock Trading Based on Ensemble Deep Neural Networks Trained With Time Graphen_US
dc.typeArticleen_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume163en_US
dc.authoridOzbayoglu, Murat/0000-0001-7998-5735-
dc.identifier.wosWOS:001259726800001en_US
dc.identifier.scopus2-s2.0-85196737192en_US
dc.identifier.doi10.1016/j.asoc.2024.111847-
dc.authorwosidOzbayoglu, Murat/H-2328-2011-
dc.authorscopusid57221948826-
dc.authorscopusid57419487300-
dc.authorscopusid57947593100-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
dc.description.woscitationindexScience Citation Index Expanded-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

104
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.