Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11650
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNassehi, Farhad-
dc.contributor.authorEken, Aykut-
dc.contributor.authorAtalay, Nart Bedin-
dc.contributor.authorFirat, Hikmet-
dc.contributor.authorErogul, Osman-
dc.date.accessioned2024-07-21T18:45:43Z-
dc.date.available2024-07-21T18:45:43Z-
dc.date.issued2024-
dc.identifier.issn1746-8094-
dc.identifier.issn1746-8108-
dc.identifier.urihttps://doi.org/10.1016/j.bspc.2024.106566-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11650-
dc.description.abstractObstructive sleep apnea (OSA) is one of the most widespread breathing-based sleep disorders. Previous studies reported daytime sleepiness, mental fatigue, and cognitive decline in patients with OSA. The diagnosis of OSA is done with laborious overnight polysomnography (PSG) recording. This study aims to classify the severity of OSA patients according to the Apnea-Hypopnea Index (AHI) into mild and moderate to-serve groups (AHI >= 15) without using recorded signals during sleep, non-PSG signals and investigate the relevant features. For this purpose, 25 OSA patients participated in 3-minute eyes closed resting state EEG session on the following morning of overnight PSG recording. Time, spectral domain, and nonlinear features were extracted from the delta, theta, and alpha subbands' of EEG signals. Several machine learning algorithms were used to classify patients' severity. To investigate optimal feature combinations features were grouped according to their types (Time domain/ spectral domain and nonlinear), their electrodes (frontal/central/parietal/occipital), and their subbands (delta/ theta/alpha). Also, the Relief method was applied to select the most relevant features. A 5-fold cross validation method was used to generalize the model behaviour. Optimal feature combinations were selected according to classifiers' performances that were evaluated by accuracy, sensitivity, specificity, and area under curve (AUC) parameters when feature sets were used as input. The 15 selected features by the Relief method showed the best performances in the K-Nearest Neighbours (K = 5) classifier [accuracy: 93.33 % +/- 5.27 %; sensitivity: 92.30 % +/- 4.97 %; specificity: 94.14 % +/- 4.24 %; AUC:0.98]. The findings establish that awake resting state EEG records might be used as a faster tool to use OSA severity level.en_US
dc.description.sponsorshipThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.en_US
dc.language.isoenen_US
dc.publisherElsevier Sci Ltden_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectResting stateen_US
dc.subjectElectroencephalographyen_US
dc.subjectObstructive sleep apneaen_US
dc.subjectMachine learningen_US
dc.subjectReliefen_US
dc.titleMachine Learning Based Severity Classification of Obstructive Sleep Apnea Patients Using Awake Eegen_US
dc.typeArticleen_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume96en_US
dc.identifier.wosWOS:001259987700001en_US
dc.identifier.scopus2-s2.0-85196761373en_US
dc.identifier.doi10.1016/j.bspc.2024.106566-
dc.authorscopusid57210944631-
dc.authorscopusid35100314400-
dc.authorscopusid35174191500-
dc.authorscopusid23993910900-
dc.authorscopusid56247443100-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ2-
dc.description.woscitationindexScience Citation Index Expanded-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept07.04. Department of Psychology-
crisitem.author.dept02.2. Department of Biomedical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

112
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.