Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11631
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKilic, Emrah-
dc.contributor.authorErsanli, Didem-
dc.date.accessioned2024-07-21T18:45:41Z-
dc.date.available2024-07-21T18:45:41Z-
dc.date.issued2024-
dc.identifier.issn0139-9918-
dc.identifier.issn1337-2211-
dc.identifier.urihttps://doi.org/10.1515/ms-2024-0044-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11631-
dc.description.abstractFilbert and Lilbert matrices are defined by terms of linear Fibonacci-like sequences. By considering terms of such linear recurrences and additional free parameters, we define a nonlinear variant of these matrices via ratios of q-forms of terms of Fibonacci-like sequences whose indices are in nonlinear forms. We derive explicit formulae for the matrices L and U come from LU-decomposition, their inverses, inverse of the main matrices and their determinants.en_US
dc.language.isoenen_US
dc.publisherWalter de Gruyter Gmbhen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFilbert matrixen_US
dc.subjectLilbert matrixen_US
dc.subjectq-analogueen_US
dc.subjectLU-decompositionen_US
dc.subjectinverse matrixen_US
dc.subjectdeterminanten_US
dc.titleA Nonlinear Filbert-Like Matrix With Three Free Parameters: From Linearity To Nonlinearityen_US
dc.typeArticleen_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume74en_US
dc.identifier.issue3en_US
dc.identifier.startpage587en_US
dc.identifier.endpage594en_US
dc.identifier.wosWOS:001253827900015en_US
dc.identifier.scopus2-s2.0-85196877264en_US
dc.identifier.doi10.1515/ms-2024-0044-
dc.authorscopusid15757727500-
dc.authorscopusid57213199250-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityQ1-
dc.description.woscitationindexScience Citation Index Expanded-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

72
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.