Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11610
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlazemi, A.-
dc.contributor.authorHopkins, T.-
dc.contributor.authorKılıç, E.-
dc.date.accessioned2024-06-19T14:55:34Z-
dc.date.available2024-06-19T14:55:34Z-
dc.date.issued2024-
dc.identifier.issn0377-0427-
dc.identifier.urihttps://doi.org/10.1016/j.cam.2024.115986-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11610-
dc.description.abstractThe Sylvester–Kac matrix (also known as the Clement matrix) and its generalizations are of interest to researchers in diverse fields. A new parameterization of the matrix has recently been presented with closed forms for the eigenvalues and Oste and Van der Jeugt (2017) have proposed their family of matrices as a source of test problems for numerical eigensolvers. In this article we extend their generalization by adding a further two parameters to the matrix definition and, for this new extension, we obtain closed forms for the eigenvalues, determinant and, the left and right eigenvectors. We show that, for certain values of the free parameters and relatively low order, these matrices may become very ill-conditioned w.r.t. both eigenvalues and inversion. In light of this we re-assess the numerical results presented by Oste and Van der Jeugt (2017) and propose a possible new testing role for parameterized Clement matrices. © 2024 Elsevier B.V.en_US
dc.description.sponsorshipKuwait University, KU: SM01/21; Kuwait University, KUen_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.relation.ispartofJournal of Computational and Applied Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBackward continued fractionen_US
dc.subjectInverseen_US
dc.subjectLU-factorizationen_US
dc.subjectMatrix inversionen_US
dc.subjectEigenvalues and eigenfunctionsen_US
dc.subjectInverse problemsen_US
dc.subjectLower-upper decompositionen_US
dc.subjectBackward continued fractionen_US
dc.subjectClement matrixen_US
dc.subjectClosed formen_US
dc.subjectContinued fractionen_US
dc.subjectEigen-valueen_US
dc.subjectGeneralisationen_US
dc.subjectInverseen_US
dc.subjectLU factorizationen_US
dc.subjectMatrix inversionsen_US
dc.subjectSoftware testingen_US
dc.titleA Four Parameter Extension To the Clement Matrix and Its Role in Numerical Software Testingen_US
dc.typeArticleen_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume450en_US
dc.identifier.wosWOS:001242274900001en_US
dc.identifier.scopus2-s2.0-85192876614en_US
dc.institutionauthorKılıç, E.-
dc.identifier.doi10.1016/j.cam.2024.115986-
dc.authorscopusid57193952032-
dc.authorscopusid36920195000-
dc.authorscopusid15757727500-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept07.03. Department of Mathematics-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

76
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.