Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11601
Full metadata record
DC FieldValueLanguage
dc.contributor.authorErdoğan, G.-
dc.contributor.authorYücel, E.-
dc.contributor.authorKiavash, P.-
dc.contributor.authorSalman, F.S.-
dc.date.accessioned2024-06-19T14:55:33Z-
dc.date.available2024-06-19T14:55:33Z-
dc.date.issued2024-
dc.identifier.issn0038-0121-
dc.identifier.urihttps://doi.org/10.1016/j.seps.2024.101895-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11601-
dc.description.abstractThis paper presents a novel model for the Vaccine Allocation Problem (VAP), which aims to allocate the available vaccines to population locations over multiple periods during a pandemic. We model the disease progression and the impact of vaccination on the spread of the disease and mortality to minimise total expected mortality and location inequity in terms of mortality ratios under total vaccine supply and hospital and vaccination centre capacity limitations at the locations. The spread of the disease is modelled through an extension of the well-established Susceptible–Infected–Recovered (SIR) epidemiological model that accounts for multiple vaccine doses. The VAP is modelled as a nonlinear mixed-integer programming model and solved to optimality using the Gurobi solver. A set of scenarios with parameters regarding the COVID-19 pandemic in the UK over 12 weeks are constructed using a hypercube experimental design on varying disease spread, vaccine availability, hospital capacity, and vaccination capacity factors. The results indicate the statistical significance of vaccine availability and the parameters regarding the spread of the disease. © 2024 Elsevier Ltden_US
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK: TR 220N017, 220N017; Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK; Newton Fund, NF: 623795194; Newton Fund, NFen_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofSocio-Economic Planning Sciencesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCOVID-19 pandemicen_US
dc.subjectFairnessen_US
dc.subjectNonlinear mixed integer programen_US
dc.subjectOptimisationen_US
dc.subjectVaccine allocationen_US
dc.subjectCOVID-19en_US
dc.subjectdisease spreaden_US
dc.subjectepidemicen_US
dc.subjectepidemiologyen_US
dc.subjectoptimizationen_US
dc.subjectvaccinationen_US
dc.subjectvaccineen_US
dc.subjectUnited Kingdomen_US
dc.titleFair and Effective Vaccine Allocation During a Pandemicen_US
dc.typeArticleen_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume93en_US
dc.identifier.wosWOS:001239761200001en_US
dc.identifier.scopus2-s2.0-85192092622en_US
dc.institutionauthorYücel, E.-
dc.identifier.doi10.1016/j.seps.2024.101895-
dc.authorscopusid14519209700-
dc.authorscopusid24773991000-
dc.authorscopusid59014066100-
dc.authorscopusid7003751168-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.4. Department of Industrial Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

1
checked on Dec 21, 2024

Page view(s)

96
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.