Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11594
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKahya, Müge-
dc.contributor.authorSöyleyici, Cem-
dc.contributor.authorBakır, Mete-
dc.contributor.authorÜnver, Hakki Özgür-
dc.date.accessioned2024-06-19T14:55:33Z-
dc.date.available2024-06-19T14:55:33Z-
dc.date.issued2022-
dc.identifier.isbn978-0-7918-8665-6-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11594-
dc.descriptionASME International Mechanical Engineering Congress and Exposition (IMECE) -- OCT 30-NOV 03 -- 2022 -- Columbus -- OHen_US
dc.description.abstractThe aviation industry demands innovation in new materials and processes which can demonstrate high performance with minimum weight. Strength-to-weight ratio (STR) is the key metric that drives the value justification in this demand stream. However, aviation's test and certification procedures are time-consuming, expensive, and heavily regulated. This study proposes a Digital Twin (DT) framework to address the time and high costs of mechanical testing procedures in the aviation industry. The proposed DT utilizes new Machine Learning (ML) techniques such as Transfer Learning (TL). Hence, a proof-of-concept study using TL in the Aluminum material group has been demonstrated. The promising results revealed that it was possible to reduce the test load of new material to 40% without any significant error.en_US
dc.description.sponsorshipAmer Soc Mech Engineersen_US
dc.language.isoenen_US
dc.publisherAmer Soc Mechanical Engineersen_US
dc.relation.ispartofProceedings of asme 2022 international mechanical engineering congress and exposition, imece2022, vol 3en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDigital twinen_US
dc.subjectfatigue estimationen_US
dc.subjectmachine learning transfer learningen_US
dc.titleA Digital Twin Framework for Mechanical Testing Powered by Machine Learningen_US
dc.typeConference Objecten_US
dc.departmentTOBB ETÜen_US
dc.identifier.wosWOS:001215395600064en_US
dc.institutionauthorKahya, Müge-
dc.institutionauthorSöyleyici, Cem-
dc.institutionauthorÜnver, Hakki Özgür-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

66
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.