Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11576
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRazmkhah, S.-
dc.contributor.authorKaramuftuoglu, M. A.-
dc.contributor.authorBozbey, A.-
dc.date.accessioned2024-06-19T14:55:31Z-
dc.date.available2024-06-19T14:55:31Z-
dc.date.issued2024-
dc.identifier.issn0953-2048-
dc.identifier.issn1361-6668-
dc.identifier.urihttps://doi.org/10.1088/1361-6668/ad44e3-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11576-
dc.description.abstractNeural networks and neuromorphic computing represent fundamental paradigms as alternative approaches to Von-Neumann-based implementations, advancing in the applications of deep learning and machine vision. Nonetheless, conventional semiconductor circuits encounter challenges in achieving ultra-fast processing speed and low power consumption due to their dissipative properties. Conversely, single flux quantum circuits exhibit inherent spiking behavior, showcasing their characteristics as a promising candidate for spiking neural networks (SNNs). In this work, we present a compact hybrid synapse circuit to mimic the biological interconnect functionality, enabling the weighting operations for excitatory and inhibitory impulses. Additionally, the proposed structure facilitates input accumulation, which is performed before the activation function. In the experiments, our synaptic structure interfaces with a soma circuit fabricated using a commercial Nb process, underscoring its compatibility and supporting its potential for integration into efficient neural network architectures. The weight value on the synapse is configurable by utilizing cryo-CMOS circuits, providing adaptability to the inference networks. We've successfully designed, fabricated, and partially tested the JJ-Synapse within our cryocooler system, enabling high-speed inference implementation for SNNs.en_US
dc.description.sponsorshipTrkiye Bilimsel ve Teknolojik Arascedil;timath;rma Kurumuhttp://dx.doi.org/10.13039/501100004410 [121E242]; TUBITAKen_US
dc.description.sponsorshipThis work is funded by TUBITAK under project number 121E242.en_US
dc.language.isoenen_US
dc.publisherIOP Publishing Ltden_US
dc.relation.ispartofSuperconductor science & technologyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectartificial synapseen_US
dc.subjectspiking neural networken_US
dc.subjectsingle flux quantumen_US
dc.subjectsuperconductor electronicsen_US
dc.subjectFluxen_US
dc.subjectcircuitsen_US
dc.titleHybrid Synaptic Structure for Spiking Neural Network Realizationen_US
dc.typeArticleen_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume37en_US
dc.identifier.issue6en_US
dc.identifier.wosWOS:001220259400001en_US
dc.identifier.scopus2-s2.0-85193279223en_US
dc.institutionauthorBozbey, A.-
dc.identifier.doi10.1088/1361-6668/ad44e3-
dc.authorscopusid26538855100-
dc.authorscopusid57191445740-
dc.authorscopusid13606998800-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.5. Department of Electrical and Electronics Engineering-
crisitem.author.dept02.5. Department of Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

54
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.