Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11534
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCampbell, J.M.-
dc.contributor.authorKiliç, E.-
dc.date.accessioned2024-04-20T13:36:29Z-
dc.date.available2024-04-20T13:36:29Z-
dc.date.issued2024-
dc.identifier.issn0015-0517-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11534-
dc.description.abstractConsider the sequences (Un : n ∈ N0) and (Vn : n ∈ N) satisfying the secondorder linear recurrences Un = pUn-1+Un-2 and Vn = pVn-1+Vn-2 with the initial conditions U0 = 0, U1 = 1, V0 = 2, and V1 = p. We explore the problem of evaluating binomial sums involving products consisting of entries in the U- and V -sequences. We apply a hypergeometric approach, inspired by Dilcher's work on hypergeometric identities for Fibonacci numbers, to obtain many new identities for sums involving U and V and products of binomial coefficients, including a non-hypergeometric analogue of Dixon's binomial identity. © 2024 Fibonacci Association. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherFibonacci Associationen_US
dc.relation.ispartofFibonacci Quarterlyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleBinomial Sums Involving Second-Order Linearly Recurrent Sequencesen_US
dc.typeArticleen_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume62en_US
dc.identifier.issue1en_US
dc.identifier.startpage57en_US
dc.identifier.endpage64en_US
dc.identifier.scopus2-s2.0-85186989575en_US
dc.institutionauthorKiliç, E.-
dc.authorscopusid56376939300-
dc.authorscopusid15757727500-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept07.03. Department of Mathematics-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

76
checked on Dec 16, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.