Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11526
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaak, A.R.S.-
dc.contributor.authorÇelebioğlu, K.-
dc.contributor.authorBozkuş, Z.-
dc.contributor.authorUlucak, O.-
dc.contributor.authorAylı, E.-
dc.date.accessioned2024-04-20T13:36:29Z-
dc.date.available2024-04-20T13:36:29Z-
dc.date.issued2024-
dc.identifier.issn0955-5986-
dc.identifier.urihttps://doi.org/10.1016/j.flowmeasinst.2024.102589-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11526-
dc.description.abstractThis paper introduces a novel computational fluid dynamics-artificial neural network (CFD-ANN) approach that has been devised to enhance the efficiency of plunger valves. The primary emphasis of this research is to achieve an optimal equilibrium between hydraulic flow and geometric configuration. This study is a novel contribution to the field as it explores the flow dynamics of plunger valves using Computational Fluid Dynamics (CFD) and proposes a unique methodology by incorporating Machine Learning (ML) for performance forecasting. An artificial neural network (ANN) architecture was developed using a thorough comprehension of flow physics and the impact of geometric parameters acquired through computational fluid dynamics (CFD). Using optimization, the primary aspects of the Artificial Neural Network (ANN), including the learning algorithm and the number of hidden layers, have been modified. This refinement has resulted in the development of an architecture exhibiting a remarkably high R2 value of 0.987. This architectural design was employed to optimize the plunger valve. By utilizing Artificial Neural Networks (ANN), a comprehensive analysis comprising 1000 distinct configurations was effectively performed, resulting in a significant reduction in time expenditure compared to relying on Computational Fluid Dynamics (CFD). The result was a refined arrangement that achieved maximum head loss, subsequently verified using computational fluid dynamics (CFD) simulations, resulting in a minimal discrepancy of 2.66%. The efficacy of artificial neural networks (ANN) becomes apparent due to their notable cost-efficiency, along with their capacity to produce outcomes that are arduous and expensive to get through conventional optimization research utilizing computational fluid dynamics (CFD). © 2024 Elsevier Ltden_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofFlow Measurement and Instrumentationen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectANNen_US
dc.subjectCFDen_US
dc.subjectOptimizationen_US
dc.subjectPlunger valveen_US
dc.subjectValidationen_US
dc.subjectCost effectivenessen_US
dc.subjectEfficiencyen_US
dc.subjectLearning algorithmsen_US
dc.subjectMultilayer neural networksen_US
dc.subjectNetwork architectureen_US
dc.subjectArtificial neural network approachen_US
dc.subjectCost effectiveen_US
dc.subjectEffective performanceen_US
dc.subjectFlow configurationsen_US
dc.subjectGeometric configurationsen_US
dc.subjectHydraulic flowen_US
dc.subjectOptimisationsen_US
dc.subjectPerformance enhancementsen_US
dc.subjectPlunger valvesen_US
dc.subjectValidationen_US
dc.subjectComputational fluid dynamicsen_US
dc.titleA novel CFD-ANN approach for plunger valve optimization: Cost-effective performance enhancementen_US
dc.typeArticleen_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume97en_US
dc.identifier.wosWOS:001218075400001en_US
dc.identifier.scopus2-s2.0-85188536747en_US
dc.institutionauthorÇelebioğlu, K.-
dc.identifier.doi10.1016/j.flowmeasinst.2024.102589-
dc.authorscopusid58953587000-
dc.authorscopusid37661052300-
dc.authorscopusid6601990118-
dc.authorscopusid57220077206-
dc.authorscopusid55371892800-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept13. TOBB ETÜ HIDRO Water Turbine Design and Test Center-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

52
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.