Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11497
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEfe, Mehmet Önder-
dc.contributor.authorKurkcu, Burak-
dc.contributor.authorKasnakoğlu, Coşku-
dc.contributor.authorMohamed, Zaharuddin-
dc.contributor.authorLiu, Zhijie-
dc.date.accessioned2024-04-20T13:35:38Z-
dc.date.available2024-04-20T13:35:38Z-
dc.date.issued2024-
dc.identifier.issn2471-285X-
dc.identifier.urihttps://doi.org/10.1109/TETCI.2024.3369981-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11497-
dc.description.abstractThis paper introduces the notion of switched neural networks for learning multiple functions under different switching configurations. The neural network structure has adjustable parameters and for each function the state of the parameter vector is determined by a mask vector, 1/0 for active/inactive or +1/-1 for plain/inverted. The optimization problem is to schedule the switching strategy (mask vector) required for each function together with the best parameter vector (weights/biases) minimizing the loss function. This requires a procedure that optimizes a vector containing real and binary values simultaneously to discover commonalities among various functions. Our studies show that a small sized neural network structure with an appropriate switching regime is able to learn multiple functions successfully. During the tests focusing on classification, we considered 2-variable binary functions and all 16 combinations have been chosen as the functions. The regression tests consider four functions of two variables. Our studies showed that simple NN structures are capable of storing multiple information via appropriate switching.en_US
dc.language.isoenen_US
dc.publisherIeee-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIeee Transactions on Emerging Topics in Computational Intelligenceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNeural networksen_US
dc.subjectparameter switchingen_US
dc.subjectlearning multiple functionsen_US
dc.subjectgenetic algorithmsen_US
dc.titleSwitched Neural Networks for Simultaneous Learning of Multiple Functionsen_US
dc.typeArticleen_US
dc.typeArticle; Early Accessen_US
dc.departmentTOBB ETÜen_US
dc.authoridKurkcu, Burak/0000-0002-0828-4234-
dc.authoridLiu, Zhijie/0000-0001-9522-4178-
dc.identifier.wosWOS:001185941600001en_US
dc.identifier.scopus2-s2.0-85188020245en_US
dc.institutionauthorKasnakoğlu, Coşku-
dc.identifier.doi10.1109/TETCI.2024.3369981-
dc.authorwosidLiu, Zhijie/U-1908-2018-
dc.authorscopusid7004595398-
dc.authorscopusid56062372800-
dc.authorscopusid24802064500-
dc.authorscopusid7005943603-
dc.authorscopusid57015715400-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
item.openairetypeArticle-
item.openairetypeArticle; Early Access-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.cerifentitytypePublications-
crisitem.author.dept02.5. Department of Electrical and Electronics Engineering-
crisitem.author.dept02.5. Department of Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

70
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.