Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11361
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPérez-Velázquez, Judith-
dc.contributor.authorGölgeli, Meltem-
dc.contributor.authorRuiz Guido, Carlos Alfonso-
dc.contributor.authorSilva-Carmona, Abraham-
dc.date.accessioned2024-04-06T08:10:50Z-
dc.date.available2024-04-06T08:10:50Z-
dc.date.issued2023-
dc.identifier.citationPérez-Velázquez, J., Gölgeli, M., Guido, C.A.R., Silva-Carmona, A. (2023). Challenges in Computational Pathology of Biomarker-Driven Predictive and Prognostic Immunotherapy. In: Rezaei, N. (eds) Handbook of Cancer and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-80962-1_334-1-
dc.identifier.isbn9783030809621-
dc.identifier.urihttps://doi.org/10.1007/978-3-030-80962-1_334-1-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11361-
dc.description.abstractComputational pathology has become a discipline which has widely benefited from the use of data-driven approaches to enable effective prognostics and diagnostics. A number of mathematical and computational models exist aiming for detection and localization of imaging biomarkers that indicate the condition of diseases. In spite of recently achieving great success, there seems to be a clear consensus on the challenges encountered on the use of these methods. The computational tasks to be performed can be error-prone, due to a number of factors such as the high variance of the data or lack of labels. Moreover, the associated models are normally developed for a specific kind of cancer and may not work in other contexts. In this chapter we discuss some of these challenges, and more importantly, we describe which solutions exist to address them.en_US
dc.language.isoenen_US
dc.publisherSpringer Nature Switzerland AGen_US
dc.relation.ispartofHandbook of Cancer and Immunologyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPredictive modelsen_US
dc.subjectPrognosis modelsen_US
dc.subjectMachine learningen_US
dc.subjectComputational pathologyen_US
dc.subjectImmunotherapyen_US
dc.titleChallenges in Computational Pathology of Biomarker-Driven Predictive and Prognostic Immunotherapyen_US
dc.typeBook Parten_US
dc.departmentTOBB ETU Mathematicsen_US
dc.identifier.startpage1en_US
dc.identifier.endpage19en_US
dc.authorid0000-0002-3671-6225-
dc.institutionauthorGölgeli, Meltem-
dc.identifier.doi10.1007/978-3-030-80962-1_334-1-
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
item.openairetypeBook Part-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept07.03. Department of Mathematics-
Appears in Collections:Matematik Bölümü / Department of Mathematics
Show simple item record



CORE Recommender

Page view(s)

58
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.