Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/1134
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNarang, Pratik-
dc.contributor.authorHota, Chittaranjan-
dc.contributor.authorSencar, Hüsrev Taha-
dc.date.accessioned2019-06-26T07:40:32Z
dc.date.available2019-06-26T07:40:32Z
dc.date.issued2016-12-15-
dc.identifier.citationNarang, P., Hota, C., & Sencar, H. T. (2016). Noise-resistant mechanisms for the detection of stealthy peer-to-peer botnets. Computer Communications, 96, 29-42.en_US
dc.identifier.issn0140-3664-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0140366416302341?via%3Dihub-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/1134-
dc.description.abstractThe problem of detection of malicious network traffic is adversarial in nature. Accurate detection of stealthy Peer-to-Peer botnets is an ongoing research problem. Past research on detection of P2P botnets has frequently used machine learning algorithms to build detection models. However, most prior work lacks the evaluation of such detection models in the presence of deliberate injection of noise by an adversary. Furthermore, detection of P2P botnets in the presence of benign P2P traffic has received little attention from the research community. This work proposes a novel approach for the detection of stealthy P2P botnets (in presence of benign P2P traffic) using conversation-based mechanisms and new features based on Fourier transforms and information entropy. We use real-world botnet data to compare the performance of our features with traditional 'flow-based' features employed by past research, and demonstrate that our approach is more resilient towards the injection of noise in the communication patterns by an adversary. We build detection models with multiple supervised machine learning algorithms. With our approach, we could detect P2P botnet traffic in the presence of injected noise with True Positive rate as high as 90%. (C) 2016 Elsevier B.V. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofComputer Communicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBotneten_US
dc.subjectMachine Learningen_US
dc.subjectPeer-To-Peeren_US
dc.subjectIntrusion Detectionen_US
dc.subjectSecurityen_US
dc.titleNoise-Resistant Mechanisms for the Detection of Stealthy Peer-To Botnetsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume96en_US
dc.identifier.startpage29en_US
dc.identifier.endpage42en_US
dc.authorid0000-0001-6910-6194-
dc.identifier.wosWOS:000389163700003-
dc.identifier.scopus2-s2.0-84971602490-
dc.institutionauthorSencar, Hüsrev Taha-
dc.identifier.doi10.1016/j.comcom.2016.05.017-
dc.authorscopusid8616233200-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.relation.otherDepartment of Information Technology, Govt. of India, New Delhi, India [12(13)/2012-ESD]-
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept02.3. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

8
checked on Jan 4, 2025

WEB OF SCIENCETM
Citations

8
checked on Dec 21, 2024

Page view(s)

116
checked on Jan 6, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.