Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11273
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAkkur, Erkan-
dc.contributor.authorLafcı, Oğuz-
dc.contributor.authorÖzdemir, Galip-
dc.contributor.authorÖztekin, Pelin Seher-
dc.contributor.authorEroğul, Osman-
dc.contributor.authorCelepli, Pınar-
dc.contributor.authorKosar, Pınar Nercis-
dc.date.accessioned2024-04-06T08:09:49Z-
dc.date.available2024-04-06T08:09:49Z-
dc.date.issued2021-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11273-
dc.description.abstractIn this study, it is aimed to investigate the analysis radiomics-machine learning on diagnostic performance in differential malign and benign breast lesions using mammography images. In this retrospective study included 101 patients (40 benign and 61 malign). 195 of region of interests (ROIs) were drawn manually by two expert radiologists. Then, using gray level thresholding and morphological operations techniques, each of ROI were segmented on “MATLAB 2020a” program. 126 radiomic features were extracted for each ROI. For eliminating redundant radiomics features, Kruskal Wallis and Relief feature selection methods were used respectively. A total 44 radiomics features were selected after feature selection process. Logistic regression, naive bayes, support vector machine and k-nearest neighbors machine learning algorithms (ML) were used to as classifiers. 10-fold cross validation was applied to measure and evaluate machine learning models. Accuracy, sensitivity and specificity were used as the primary measures of performance of radiomics-machine learning model. Among the machine learning algorithms, support vector machine had the best performance (93.3%, 95.6%, 91.1%). In addition, we found that the feature selection method improved the performance for all ML models. By building the radiomics-ML based analysis with the optimal feature subset, the performance of discrimination of benign and malign lesions showed excellent results which we believe would be useful for clinical practice.en_US
dc.language.isoenen_US
dc.publisherBiotürkiyeen_US
dc.relation.ispartofInternational Biotechnology Congress 9-11 September 2021en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectRadiomicsen_US
dc.subjectMachine Learningen_US
dc.subjectFeature Selectionen_US
dc.subjectBreast Canceren_US
dc.titleRadiomics-Machine Learning Analysis for Discrimination of Malign and Benign Breast Lesions on Mammography Imagesen_US
dc.typeNeural Information Processing Systems Track on Datasets and Benchmarks 1 (NeurIPS Datasets and Benchmarks 2021)+AG169:AJ169en_US
dc.departmentTOBB ETU Biomedical Engineeringen_US
dc.authorid0000-0002-4640-6570-
dc.institutionauthorEroğul, Osman-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeNeural Information Processing Systems Track on Datasets and Benchmarks 1 (NeurIPS Datasets and Benchmarks 2021)+AG169:AJ169-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.2. Department of Biomedical Engineering-
Appears in Collections:Biyomedikal Mühendisliği Bölümü / Department of Biomedical Engineering
Show simple item record



CORE Recommender

Page view(s)

106
checked on Dec 16, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.