Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11235
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAkkur, Erkan-
dc.contributor.authorTürk, Fuat-
dc.contributor.authorEroğul, Osman-
dc.date.accessioned2024-04-06T08:09:28Z-
dc.date.available2024-04-06T08:09:28Z-
dc.date.issued2022-
dc.identifier.isbn9786058291065-
dc.identifier.urihttps://ikstc.karatekin.edu.tr/files/FullTextProceedingBook.pdf-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11235-
dc.description.abstractCurrently, breast cancer affects many women worldwide. In recent years, many Computer-aided diagnosis (CAD) model have been developed for early diagnosis of breast cancer. An efficient CAD model is suggested to identify mammogram images as benign versus malignant in this study. The suggested CAD model constitutes four stages which are image acgusition, segmentation, feature extraction, feature selection and classification process. Gray level run matrix (GLRM) approach is used for feature extraction, while monarch butterfly optimization (MBO) for feature selection process. Support vector machine (SVM) algorithm is preferred for classification process. The suggested model has been tested on a private mammographic dataset. The suggested model (GLRM+MBO+SVM) shows an 0.944 of accuracy for breast lesion classification. Compared with similar studies, our proposed model showed good classification results for the breast lesion classification process.en_US
dc.language.isoenen_US
dc.publisherÇankırı Karatekin Universityen_US
dc.relation.ispartof1ˢᵗ International Karatekin Science and Technology Conference 1-3 September 2022 Çankırı, Turkeyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBreast canceren_US
dc.subjectGray level run matrixen_US
dc.subjectMonarch Butterly optimizationen_US
dc.subjectSupport vector machineen_US
dc.titleClassification of Breast Lesions on Mammogram Images Using Monarch Butterfly Optimization and Support Vector Machineen_US
dc.typeConference Objecten_US
dc.departmentTOBB ETU Biomedical Engineeringen_US
dc.identifier.startpage1en_US
dc.identifier.endpage6en_US
dc.authorid0000-0002-4640-6570-
dc.institutionauthorEroğul, Osman-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.2. Department of Biomedical Engineering-
Appears in Collections:Biyomedikal Mühendisliği Bölümü / Department of Biomedical Engineering
Show simple item record



CORE Recommender

Page view(s)

88
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.