Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11031
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCan, Y.-
dc.contributor.authorBigat, I.-
dc.contributor.authorNassehi, F.-
dc.contributor.authorEken, A.-
dc.contributor.authorErogul, O.-
dc.date.accessioned2024-02-11T17:17:35Z-
dc.date.available2024-02-11T17:17:35Z-
dc.date.issued2023-
dc.identifier.isbn9798350328967-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO59875.2023.10359207-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11031-
dc.description2023 Medical Technologies Congress, TIPTEKNO 2023 -- 10 November 2023 through 12 November 2023 -- 195703en_US
dc.description.abstractThis study proposes a highly accurate and fast algorithm for the diagnosis of attention deficit hyperactivity disorder (ADHD), which will reduce reliance on time-consuming subjective assessments, the findings of which are likely to be mistaken with other neurodevelopmental diseases. Time, frequency and nonlinear features were extracted from electroencephalographic (EEG) signals which recording based on visual attention task obtained from 61 ADHD and 60 healthy participants. In this study, Least Absolute Shrinkage and Selection Operator (LASSO) was used to find reliable features; and four machine learning classifiers such as support vector machine (SVM), k-nearest neighbors (KNN), decision tree and ensemble learning were evaluated for classifying ADHD and healthy children. The results were indicated that using LASSO with SVM can be useful for classifying ADHD and the highest average accuracy was reached in this study was 96.3%. In addition, the features selected with LASSO had shown that signals from the temporal, parietal, and occipital lobes might have the possible biomarkers for ADHD, at least in tasks that require visual attention. © 2023 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofTIPTEKNO 2023 - Medical Technologies Congress, Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectattention deficit hyperactivity disorderen_US
dc.subjectEEGen_US
dc.subjectfrequency featuresen_US
dc.subjectLASSOen_US
dc.subjectmachine learningen_US
dc.subjectnon-linear featuresen_US
dc.subjectBehavioral researchen_US
dc.subjectDecision treesen_US
dc.subjectDiseasesen_US
dc.subjectElectroencephalographyen_US
dc.subjectFeature extractionen_US
dc.subjectLearning algorithmsen_US
dc.subjectLearning systemsen_US
dc.subjectNearest neighbor searchen_US
dc.subjectAttention deficit hyperactivity disorderen_US
dc.subjectElectroencephalographicen_US
dc.subjectFrequency featuresen_US
dc.subjectHighly accurateen_US
dc.subjectLeast absolute shrinkage and selection operatorsen_US
dc.subjectMachine learning algorithmsen_US
dc.subjectMachine-learningen_US
dc.subjectNonlinear featuresen_US
dc.subjectSupport vectors machineen_US
dc.subjectVisual Attentionen_US
dc.subjectSupport vector machinesen_US
dc.titleDetermination of the Optimal Eeg-Based Features To Detect Adhd by Machine Learning Algorithmsen_US
dc.typeConference Objecten_US
dc.departmentTOBB ETÜen_US
dc.identifier.scopus2-s2.0-85182729308en_US
dc.institutionauthor-
dc.identifier.doi10.1109/TIPTEKNO59875.2023.10359207-
dc.authorscopusid58821717000-
dc.authorscopusid57475953700-
dc.authorscopusid57210944631-
dc.authorscopusid35100314400-
dc.authorscopusid56247443100-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.2. Department of Biomedical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

76
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.