Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11030
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUnlu, B.-
dc.contributor.authorErogul, O.-
dc.date.accessioned2024-02-11T17:17:35Z-
dc.date.available2024-02-11T17:17:35Z-
dc.date.issued2023-
dc.identifier.isbn9798350328967-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO59875.2023.10359234-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11030-
dc.description2023 Medical Technologies Congress, TIPTEKNO 2023 -- 10 November 2023 through 12 November 2023 -- 195703en_US
dc.description.abstractPremature Ventricular Contractions (PVCs), a form of abnormal heartbeat that can be identified through electrocardiogram (ECG) signals, play a crucial role in detecting potentially life-threatening ventricular arrhythmias. In this study, three features (RR interval, QRS width, and R amplitude) are extracted from the MIT-BIH Arrhythmia Database and used Decision Tree (DT), Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) as classifiers. The classifiers achieved satisfactory results, with average accuracy rates of 94 % for KNN(K = 5) and 93% for KNN (K = 7), 87% for SVM, and 93% for DT. In addition, the classifiers were tested with the St. Petersburg Institute of Cardiological Technics 12-lead Arrhythmia database and obtained a convincing result of 74% accuracy for the SVM classifier, 70% for the KNN (K=5) and 68% KNN(K = 7) classifier, and 95% for the DT classifier. These results highlight the potential of feature selection and classification techniques in accurately identifying PVC beats from ECG signals, which is crucial for the early detection and effective treatment of ventricular arrhythmias. © 2023 IEEE.en_US
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAKen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofTIPTEKNO 2023 - Medical Technologies Congress, Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArrhythmia Classificationen_US
dc.subjectElectrocardiogram (ECG)en_US
dc.subjectMachine Learningen_US
dc.subjectPremature Ventricular Contraction (PVC)en_US
dc.subjectBiomedical signal processingen_US
dc.subjectClassification (of information)en_US
dc.subjectDecision treesen_US
dc.subjectDiseasesen_US
dc.subjectNearest neighbor searchen_US
dc.subjectSupport vector machinesen_US
dc.subjectArrhythmia classificationen_US
dc.subjectElectrocardiogramen_US
dc.subjectElectrocardiogram signalen_US
dc.subjectMachine-learningen_US
dc.subjectNearest-neighbouren_US
dc.subjectPremature ventricular contractionen_US
dc.subjectRR intervalsen_US
dc.subjectSupport vectors machineen_US
dc.subjectVentricular arrhythmiasen_US
dc.subjectElectrocardiogramsen_US
dc.titleDetection of Premature Ventricular Contractions Using Machine Learningen_US
dc.typeConference Objecten_US
dc.departmentTOBB ETÜen_US
dc.identifier.scopus2-s2.0-85182745833en_US
dc.institutionauthor-
dc.identifier.doi10.1109/TIPTEKNO59875.2023.10359234-
dc.authorscopusid57448741700-
dc.authorscopusid56247443100-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.2. Department of Biomedical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

80
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.