Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/11030
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Unlu, B. | - |
dc.contributor.author | Erogul, O. | - |
dc.date.accessioned | 2024-02-11T17:17:35Z | - |
dc.date.available | 2024-02-11T17:17:35Z | - |
dc.date.issued | 2023 | - |
dc.identifier.isbn | 9798350328967 | - |
dc.identifier.uri | https://doi.org/10.1109/TIPTEKNO59875.2023.10359234 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/11030 | - |
dc.description | 2023 Medical Technologies Congress, TIPTEKNO 2023 -- 10 November 2023 through 12 November 2023 -- 195703 | en_US |
dc.description.abstract | Premature Ventricular Contractions (PVCs), a form of abnormal heartbeat that can be identified through electrocardiogram (ECG) signals, play a crucial role in detecting potentially life-threatening ventricular arrhythmias. In this study, three features (RR interval, QRS width, and R amplitude) are extracted from the MIT-BIH Arrhythmia Database and used Decision Tree (DT), Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) as classifiers. The classifiers achieved satisfactory results, with average accuracy rates of 94 % for KNN(K = 5) and 93% for KNN (K = 7), 87% for SVM, and 93% for DT. In addition, the classifiers were tested with the St. Petersburg Institute of Cardiological Technics 12-lead Arrhythmia database and obtained a convincing result of 74% accuracy for the SVM classifier, 70% for the KNN (K=5) and 68% KNN(K = 7) classifier, and 95% for the DT classifier. These results highlight the potential of feature selection and classification techniques in accurately identifying PVC beats from ECG signals, which is crucial for the early detection and effective treatment of ventricular arrhythmias. © 2023 IEEE. | en_US |
dc.description.sponsorship | Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | TIPTEKNO 2023 - Medical Technologies Congress, Proceedings | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Arrhythmia Classification | en_US |
dc.subject | Electrocardiogram (ECG) | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Premature Ventricular Contraction (PVC) | en_US |
dc.subject | Biomedical signal processing | en_US |
dc.subject | Classification (of information) | en_US |
dc.subject | Decision trees | en_US |
dc.subject | Diseases | en_US |
dc.subject | Nearest neighbor search | en_US |
dc.subject | Support vector machines | en_US |
dc.subject | Arrhythmia classification | en_US |
dc.subject | Electrocardiogram | en_US |
dc.subject | Electrocardiogram signal | en_US |
dc.subject | Machine-learning | en_US |
dc.subject | Nearest-neighbour | en_US |
dc.subject | Premature ventricular contraction | en_US |
dc.subject | RR intervals | en_US |
dc.subject | Support vectors machine | en_US |
dc.subject | Ventricular arrhythmias | en_US |
dc.subject | Electrocardiograms | en_US |
dc.title | Detection of Premature Ventricular Contractions Using Machine Learning | en_US |
dc.type | Conference Object | en_US |
dc.department | TOBB ETÜ | en_US |
dc.identifier.scopus | 2-s2.0-85182745833 | en_US |
dc.institutionauthor | … | - |
dc.identifier.doi | 10.1109/TIPTEKNO59875.2023.10359234 | - |
dc.authorscopusid | 57448741700 | - |
dc.authorscopusid | 56247443100 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.2. Department of Biomedical Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.