Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/10990
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAtes,G.C.-
dc.contributor.authorGorguluarslan,R.M.-
dc.date.accessioned2024-01-21T09:24:29Z-
dc.date.available2024-01-21T09:24:29Z-
dc.date.issued2024-
dc.identifier.issn0941-0643-
dc.identifier.urihttps://doi.org/10.1007/s00521-023-09308-z-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/10990-
dc.description.abstractState-of-the-art deep neural networks have achieved great success as an alternative to topology optimization by eliminating the iterative framework of the optimization process. However, models with strong predicting capabilities require massive data, which can be time-consuming, particularly for high-resolution structures. Transfer learning from pre-trained networks has shown promise in enhancing network performance on new tasks with a smaller amount of data. In this study, a U-net-based deep convolutional encoder–decoder network was developed for predicting high-resolution (256 × 256) optimized structures using transfer learning and fine-tuning for topology optimization. Initially, the VGG16 network pre-trained on ImageNet was employed as the encoder for transfer learning. Subsequently, the decoder was constructed from scratch and the network was trained in two steps. Finally, the results of models employing transfer learning and those trained entirely from scratch were compared across various core parameters, including different initial input iterations, fine-tuning epoch numbers, and dataset sizes. Our findings demonstrate that the utilization of transfer learning from the ImageNet pre-trained VGG16 network as the encoder can improve the final predicting performance and alleviate structural discontinuity issues in some cases while reducing training time. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofNeural Computing and Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep learningen_US
dc.subjectFine-tuningen_US
dc.subjectTopology optimizationen_US
dc.subjectTransfer learningen_US
dc.subjectVGG networken_US
dc.titleConvolutional Encoder–decoder Network Using Transfer Learning for Topology Optimizationen_US
dc.typeArticleen_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume36en_US
dc.identifier.issue8en_US
dc.identifier.startpage4435en_US
dc.identifier.endpage4450en_US
dc.identifier.wosWOS:001122244400002en_US
dc.identifier.scopus2-s2.0-85179692267en_US
dc.identifier.doi10.1007/s00521-023-09308-z-
dc.authorscopusid57221393471-
dc.authorscopusid56076567200-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityQ2-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

1
checked on Dec 21, 2024

Page view(s)

68
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.