Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/10931
Title: Tiroid nodüllerinin genetik algoritma ile eğitilen anfıs yöntemi kullanılarak iyi huylu ve kötü huylu olarak ayrıştırılması ile yeni bir bilgisayar destekli tanı temelli risk sınıflandırma sistemi önerilmesi
Other Titles: Differentiation of benign and malignant thyroid nodules with anfis by using genetic algorithm and proposing a novel cad-based risk stratification system of thyroid nodules
Authors: Öztürk, Ahmet Cankat
Advisors: Eroğul, Osman
Keywords: Mühendislik Bilimleri
Engineering Sciences
Tiroid
Tiroid nodülü
Sınıflandırma
ANFIS
Derin sinir ağı
Rehber
Thyroid
Thyroid nodule
Classification
ANFIS
Deep neural network
Guideline
Publisher: TOBB ETÜ
Abstract: Literatürde kullanılan tiroid nodülü risk sınıflandırma rehberleri, nodüllerin bazı iyi bilinen sonografik özelliklerine göre, hekimlerin klinik tecrübelerine dayanarak oluşturulmuşlardır. Bu özelliklere göre nodüllere tanı konması subjektif bir yöntem olup hekimin tecrübesine bağlıdır. Bu çalışmada, yapay zeka yöntemleri kullanılarak, nodüllerin ayırıcı tanısında çok çeşitli ultrason bulgularının ilişkileri incelenmiş, bu durumun üstesinden gelinmesi amaçlanmıştır. Uyarlanabilir Sinirsel Bulanık Çıkarım Sistemi'nin (ANFIS) Genetik Algoritma (GA) ile eğitimine dayalı yenilikçi bir yöntem, kötü huylu tiroid nodüllerini iyi huylu olanlardan ayırt etmek için kullanılmıştır. Önerilen yöntemden elde edilen sonuçlar yaygın olarak kullanılan ANFIS'in türev tabanlı optimize edilen algoritmaları ve Derin Sinir Ağı (DNN) yöntemi ile karşılaştırılmış, önerilen yöntemin tiroid nodüllerini sınıflandırmada daha başarılı olduğu gösterilmiştir. Ayrıca tiroid nodüllerinin sınıflandırılması için literatürde olmayan bilgisayar destekli tanı (BDT) temelli yeni bir risk sınıflandırma sistemi önerilmiştir.
The thyroid nodule risk stratification guidelines used in the literature are based on certain well-known sonographic features of nodules and are still subjective since the application of these characteristics strictly depends on the reading physician. These guidelines classify nodules according to the sub-features of limited sonographic signs. This study aims to overcome these limitations by examining the relationships of a wide range of ultrasound signs in the differential diagnosis of nodules by using artificial intelligence methods. An innovative method based on training Adaptive Neuro-Fuzzy Inference Systems (ANFIS) by using Genetic Algorithm (GA) is used to differentiate malignant from benign thyroid nodules. The comparison of the results from the proposed method to the results from the commonly used derivative-based algorithms and Deep Neural Network (DNN) methods yielded that the proposed method is more successful in differentiating malignant from benign thyroid nodules. Furthermore, a novel computer aided diagnosis (CAD) based risk stratification system for the thyroid nodule's ultrasound classification that is not present in the literature is proposed.
URI: https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=S2eMu1TIwY_v4mYv58xAr1Sm26Vfd1G0oVpz5geiCAf0p1CWZ6ojOZ04xoMSUDj7
https://hdl.handle.net/20.500.11851/10931
Appears in Collections:Biyomedikal Mühendisliği Doktora Tezleri / Biomedical Engineering PhD Theses

Files in This Item:
File SizeFormat 
832129.pdf4.06 MBAdobe PDFView/Open
Show full item record



CORE Recommender

Page view(s)

122
checked on Nov 4, 2024

Download(s)

20
checked on Nov 4, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.