Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/10798
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUnver, H.O.-
dc.contributor.authorSener, B.-
dc.date.accessioned2023-10-24T07:03:39Z-
dc.date.available2023-10-24T07:03:39Z-
dc.date.issued2023-
dc.identifier.issn0956-5515-
dc.identifier.urihttps://doi.org/10.1007/s10845-021-01839-3-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/10798-
dc.description.abstractDetection and avoidance of regenerative chatter play a crucial role in ensuring the high quality and efficiency of machining operations. Predominant analytical approaches provide stability lobe diagrams for machining processes. Deep learning is a general term given to the most recent and successful group of machine learning methods that proved great promise in many areas of human life. This study purposes a novel transfer learning framework that combines analytical solutions and convolution neural network (CNN) under a novel transfer learning framework. Stability lobes and numerical time-domain solutions of analytical methods are used to train and label, arguably one of the most successful CNN architectures, AlexNet. This approach eliminates the need for a time-consuming and costly experimental data collection phase for training. Furthermore, an ensemble empirical mode decomposition based signal pre-processing method is developed. An IMF-based multi-band ensemble approach is proposed where only intrinsic mode functions relevant to each modal frequency of the system are selected based on their entropy increase and used in training multiple AlexNet instances. The measured data were collected during shoulder milling from a CNC-vertical milling machine. The results revealed considerable success in several scenarios ranging from 82 to 100%, without using any experimentally measured data in training. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.en_US
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK: 118M414en_US
dc.description.sponsorshipThe authors are thankful to Prof. Dr. Yusuf Altıntaş for his support in the dynamic characterization of the CNC-machine tool. This project is supported by TUBITAK (The Scientific and Technological Research Council of Turkey) 1001 program (No. 118M414).en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofJournal of Intelligent Manufacturingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectChatter detectionen_US
dc.subjectCNNen_US
dc.subjectEEMDen_US
dc.subjectTransfer learningen_US
dc.subjectConvolutionen_US
dc.subjectConvolutional neural networksen_US
dc.subjectDeep learningen_US
dc.subjectIntrinsic mode functionsen_US
dc.subjectLearning systemsen_US
dc.subjectMachining centersen_US
dc.subjectNumerical methodsen_US
dc.subjectTime domain analysisen_US
dc.subjectChatter detectionen_US
dc.subjectConvolution neural networken_US
dc.subjectConvolutional neural networken_US
dc.subjectDetection and avoidancesen_US
dc.subjectEEMDen_US
dc.subjectHigh qualityen_US
dc.subjectHigher efficiencyen_US
dc.subjectLearning frameworksen_US
dc.subjectRegenerative chattersen_US
dc.subjectTransfer learningen_US
dc.subjectMilling (machining)en_US
dc.titleA Novel Transfer Learning Framework for Chatter Detection Using Convolutional Neural Networksen_US
dc.typeArticleen_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume34en_US
dc.identifier.issue3en_US
dc.identifier.startpage1105en_US
dc.identifier.endpage1124en_US
dc.identifier.wosWOS:000697093700001-
dc.identifier.scopus2-s2.0-85115181096-
dc.institutionauthor-
dc.identifier.doi10.1007/s10845-021-01839-3-
dc.authorscopusid6603873269-
dc.authorscopusid57220450360-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

35
checked on Dec 21, 2024

Page view(s)

36
checked on Jan 6, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.