Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/10791
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBilazeroğlu, Ş.-
dc.contributor.authorGöktepe, S.-
dc.contributor.authorMerdan, H.-
dc.date.accessioned2023-10-24T07:03:38Z-
dc.date.available2023-10-24T07:03:38Z-
dc.date.issued2023-
dc.identifier.issn0960-0779-
dc.identifier.urihttps://doi.org/10.1016/j.chaos.2023.114101-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/10791-
dc.description.abstractThis study aims to present a complete Hopf bifurcation analysis of a model describing the relationship between prey and predator. A ratio-dependent reaction–diffusion system with two discrete time delays operating under Neumann boundary conditions governs the model that represents this competition. The bifurcation parameter for the analysis is a delay parameter that reflects the amount of time needed for the predator to be able to hunt. Bilazeroğlu and Merdan's algorithm (Bilazeroğlu et al., 2021), which is developed by using the center manifold theorem and normal form theory, is used to establish the existence of Hopf bifurcations and also the stability of the bifurcating periodic solutions. The same procedure is used to illustrate some specific bifurcation properties, such as direction, stability, and period. Furthermore, by examining a model with constant coefficients, we also analyze how diffusion and the amount of time needed for prey to mature impact the model's dynamics. To support the obtained analytical results, we also run some numerical simulations. The results indicate that the dynamic of the mathematical model is significantly influenced by diffusion, the amount of time needed for the predator to gain the capacity to hunt, and the amount of time required for prey to reach maturity that the predator can hunt. © 2023 Elsevier Ltden_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofChaos, Solitons and Fractalsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDelay differential equationsen_US
dc.subjectDiscrete time delaysen_US
dc.subjectFunctional partial differential equationsen_US
dc.subjectHopf bifurcationen_US
dc.subjectPeriodic solutionsen_US
dc.subjectPopulation dynamicsen_US
dc.subjectReaction–diffusion systemen_US
dc.subjectStabilityen_US
dc.subjectBoundary conditionsen_US
dc.subjectDiffusionen_US
dc.subjectPartial differential equationsen_US
dc.subjectPredator prey systemsen_US
dc.subjectSystem stabilityen_US
dc.subjectTime delayen_US
dc.subjectDelay differential equationsen_US
dc.subjectDiffusive predator-prey systemen_US
dc.subjectDiscrete delayen_US
dc.subjectDiscrete time delayen_US
dc.subjectFunctional partial differential equationen_US
dc.subjectHopf bifurcation analysisen_US
dc.subjectMaturation periodsen_US
dc.subjectPeriodic solutionen_US
dc.subjectRandom Walken_US
dc.subjectReaction diffusion systemsen_US
dc.subjectHopf bifurcationen_US
dc.titleEffects of the Random Walk and the Maturation Period in a Diffusive Predator–prey System With Two Discrete Delaysen_US
dc.typeArticleen_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume176en_US
dc.identifier.wosWOS:001088289800001en_US
dc.identifier.scopus2-s2.0-85173022377en_US
dc.institutionauthor-
dc.identifier.doi10.1016/j.chaos.2023.114101-
dc.authorscopusid57219806712-
dc.authorscopusid6507549350-
dc.authorscopusid6508264521-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.dept07.03. Department of Mathematics-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
10791.pdf5.88 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

32
checked on Dec 16, 2024

Download(s)

2
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.