Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/10671
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDergi, Halil Berk-
dc.contributor.authorAkgun, Mehmet Burak-
dc.date.accessioned2023-10-24T06:59:08Z-
dc.date.available2023-10-24T06:59:08Z-
dc.date.issued2023-
dc.identifier.isbn979-8-3503-4355-7-
dc.identifier.issn2165-0608-
dc.identifier.urihttps://doi.org/10.1109/SIU59756.2023.10223958-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/10671-
dc.description31st IEEE Conference on Signal Processing and Communications Applications (SIU) -- JUL 05-08, 2023 -- Istanbul Tech Univ, Ayazaga Campus, Istanbul, TURKEYen_US
dc.description.abstractSocial recommendation systems that use graph neural network (GNN) models are effective in addressing the data sparsity issue present in collaborative filtering models. Social homophily and item similarities are critical factors that affect users' preferences, and GNN models must capture these factors while incorporating users' interaction behaviors. In this work, we propose SCCL, a recommendation model that jointly captures social influence and item similarity signals with cross-view contrastive learning. We constructed a user-user social graph from social networks and item-item graphs from common tags. In our model, user-user relations are represented as a homogeneous graph, and item-item relations are represented as hypergraphs. We demonstrate the effectiveness of our model on two real-world datasets.en_US
dc.description.sponsorshipIEEE,TUBITAK BILGEM,Turkcellen_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.ispartof2023 31st Signal Processing And Communications Applications Conference, Siuen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectInformation Systemsen_US
dc.subjectRecommender Systemsen_US
dc.subjectSocial Recomendationen_US
dc.subjectGraph Neural Networken_US
dc.titleSocial and Categorical Signals in Contrastive Learning for Recommendation Systemsen_US
dc.typeConference Objecten_US
dc.departmentTOBB ETÜen_US
dc.identifier.wosWOS:001062571000184en_US
dc.identifier.scopus2-s2.0-85173549156en_US
dc.institutionauthor-
dc.identifier.doi10.1109/SIU59756.2023.10223958-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1tr-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

30
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.