Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/10501
Title: | Exploring the Tradeoff Between Energy Dissipation, Delay, and the Number of Backbones for Broadcasting in Wireless Sensor Networks Through Goal Programming | Authors: | Gültekin, B. Nurcan-Atçeken, D. Altın-Kayhan, A. Yildiz, H.U. Tavlı, B. |
Keywords: | Broadcasting Delay Goal programming Mixed integer programming Network lifetime Wireless sensor networks Broadcasting Budget control Energy dissipation Integer programming Sensor nodes Balanced energy dissipations Broadcast packet Delay Energy budgets Goal-programming Mixed-Integer Programming Mode of operations Network lifetime Node-based Relay node Goal programming |
Publisher: | Elsevier B.V. | Abstract: | Broadcasting, which is an essential mode of operation in wireless sensor networks (WSNs), dissipates a non-negligible portion of the energy budget of a sensor node. Broadcasting is achieved by the dissemination of broadcast packets (originated at the BS) by a set of relay nodes, which constitute a backbone so that all sensor nodes receive broadcast packets. Utilization of multiple backbones is necessary to achieve balanced energy dissipation of sensor nodes in broadcasting. In this study, we propose two mixed integer programming (MIP) models (i.e., the flow-based model and the node-based model), which minimize the energy dissipation of the highest energy-consuming node for broadcasting by utilizing multiple backbones. Balanced energy minimization and delay minimization objectives are integrated through a goal programming (GP) framework built upon the foundation provided by the scalable node-based model. Performance evaluations based on the optimal solutions of our models reveal that maximum energy dissipation and delay in WSN broadcasting can be significantly reduced, simultaneously, by utilizing multiple backbones (e.g., with two backbones maximum energy dissipation and delay can be, concurrently, reduced by more than 2% and 22%, respectively, in comparison to the single backbone case, likewise, it is also possible to simultaneously reduce maximum energy dissipation and delay more than 8% and 13%, respectively, depending on the priorities assigned to the objectives). Nevertheless, employing more than two backbones does not provide any significant performance improvements. © 2023 Elsevier B.V. | URI: | https://doi.org/10.1016/j.adhoc.2023.103223 https://hdl.handle.net/20.500.11851/10501 |
ISSN: | 1570-8705 |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.