Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/10398
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKızılgül, M.-
dc.contributor.authorKarakış, R.-
dc.contributor.authorDogan, N.-
dc.contributor.authorBostan, H.-
dc.contributor.authorYapıcı, M.M.-
dc.contributor.authorGül, U.-
dc.contributor.authorUçan, B.-
dc.date.accessioned2023-04-16T10:02:14Z-
dc.date.available2023-04-16T10:02:14Z-
dc.date.issued2023-
dc.identifier.issn1479-683X-
dc.identifier.urihttps://doi.org/10.1093/ejendo/lvad005-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/10398-
dc.description.abstractOBJECTIVE: Despite improvements in diagnostic methods, acromegaly is still a late-diagnosed disease. In this study, it was aimed to automatically recognize acromegaly disease from facial images by using deep learning methods and to facilitate the detection of the disease. DESIGN: Cross-sectional, single-centre study. METHODS: The study included 77 acromegaly (52.56 ± 11.74, 34 males/43 females) patients and 71 healthy controls (48.47 ± 8.91, 39 males/32 females), considering gender and age compatibility. At the time of the photography, 56/77 (73%) of the acromegaly patients were in remission. Normalized images were obtained by scaling, aligning, and cropping video frames. Three architectures named ResNet50, DenseNet121, and InceptionV3 were used for the transfer learning-based convolutional neural network (CNN) model developed to classify face images as "Healthy" or "Acromegaly". Additionally, we trained and integrated these CNN machine learning methods to create an Ensemble Method (EM) for facial detection of acromegaly. RESULTS: The positive predictive values obtained for acromegaly with the ResNet50, DenseNet121, InceptionV3, and EM were calculated as 0.958, 0.965, 0.962, and 0.997, respectively. The average sensitivity, specificity, precision, and correlation coefficient values calculated for each of the ResNet50, DenseNet121, and InceptionV3 models are quite close. On the other hand, EM outperformed these three CNN architectures and provided the best overall performance in terms of sensitivity, specificity, accuracy, and precision as 0.997, 0.997, 0.997, and 0.998, respectively. CONCLUSIONS: The present study provided evidence that the proposed AcroEnsemble Model might detect acromegaly from facial images with high performance. This highlights that artificial intelligence programs are promising methods for detecting acromegaly in the future. © The Author(s) 2023. Published by Oxford University Press on behalf of (ESE) European Society of Endocrinology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.en_US
dc.language.isoenen_US
dc.publisherNLM (Medline)en_US
dc.relation.ispartofEuropean journal of endocrinologyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectacromegalyen_US
dc.subjectartificial intelligenceen_US
dc.subjectdeep learningen_US
dc.subjectdetectionen_US
dc.subjectacromegalyen_US
dc.subjectartificial intelligenceen_US
dc.subjectcross-sectional studyen_US
dc.subjectdiagnostic imagingen_US
dc.subjectfemaleen_US
dc.subjecthumanen_US
dc.subjectmachine learningen_US
dc.subjectmaleen_US
dc.subjectAcromegalyen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectCross-Sectional Studiesen_US
dc.subjectFemaleen_US
dc.subjectHumansen_US
dc.subjectMachine Learningen_US
dc.subjectMaleen_US
dc.subjectNeural Networks, Computeren_US
dc.titleReal-Time Detection of Acromegaly From Facial Images With Artificial Intelligenceen_US
dc.typeArticleen_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume188en_US
dc.identifier.issue1en_US
dc.identifier.wosWOS:000984865500021en_US
dc.identifier.scopus2-s2.0-85147460775en_US
dc.institutionauthor-
dc.identifier.pmid36747333en_US
dc.identifier.doi10.1093/ejendo/lvad005-
dc.authorscopusid32867786600-
dc.authorscopusid23466700600-
dc.authorscopusid57022360400-
dc.authorscopusid57219025715-
dc.authorscopusid57207684876-
dc.authorscopusid57463781500-
dc.authorscopusid55175381800-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

3
checked on Dec 21, 2024

Page view(s)

82
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.