Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/10365
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGörgülüarslan, Recep M.-
dc.contributor.authorÖzay, Arda, I-
dc.date.accessioned2023-04-16T10:01:18Z-
dc.date.available2023-04-16T10:01:18Z-
dc.date.issued2023-
dc.identifier.issn1464-4207-
dc.identifier.issn2041-3076-
dc.identifier.urihttps://doi.org/10.1177/14644207221148854-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/10365-
dc.description.abstractIn this study, an efficient fatigue life estimation approach is proposed based on an equivalent solid model, along with two stress concentration factors, instead of a lattice model to simplify simulations for the strain-life method. One of the stress concentration factors accounts for the stress concentrations at the strut joints in lattice structures without any manufacturing effect, while the other accounts for the stress concentrations due to surface defects on the struts introduced by the additive manufacturing process. A simple solid cell, for which the dimensions are the same as those of the lattice cell, is first used to estimate the fatigue life of the bulk material used in the additive manufacturing process using the Brown-Miller strain-life method. Combinations of two stress concentration factors were then utilized to predict the fatigue life of the lattice structure from the equivalent solid model. Using this approach, computationally expensive lattice structure simulations were eliminated, and the fatigue life of the lattice structure was predicted directly from the bulk material fatigue life estimation. The proposed approach was applied to different lattice types made of Ti-6Al-4V alloy using the laser-powder bed fusion additive manufacturing process. The fatigue life results estimated using the proposed approach were in good agreement with the experimental fatigue life results reported in the literature.en_US
dc.language.isoenen_US
dc.publisherSage Publications Ltden_US
dc.relation.ispartofProceedings of the Institution of Mechanical Engineers Part L-Journal of Materials-Design and Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLattice structureen_US
dc.subjectadditive manufacturingen_US
dc.subjectfatigue lifeen_US
dc.subjectstrain-life methoden_US
dc.subjectstress concentrationen_US
dc.subjectCompression-Compression Fatigueen_US
dc.subjectMechanical-Propertiesen_US
dc.subjectBehavioren_US
dc.subjectStrengthen_US
dc.subjectTantalumen_US
dc.subjectPorosityen_US
dc.subjectDefectsen_US
dc.subjectDesignen_US
dc.subjectFoamsen_US
dc.titleFatigue Life Prediction of Lattice Structures Using a Strain-Life Method Based on an Equivalent Solid Modelen_US
dc.typeArticleen_US
dc.departmentTOBB ETÜen_US
dc.authoridGorguluarslan, Recep/0000-0002-0550-8335-
dc.identifier.wosWOS:000906065000001en_US
dc.identifier.scopus2-s2.0-85145413371en_US
dc.institutionauthor-
dc.identifier.doi10.1177/14644207221148854-
dc.authorscopusid56076567200-
dc.authorscopusid58039158700-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

156
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.