Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/10346
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHanalıoğlu, Zülfiye-
dc.contributor.authorPoladova, Aynura-
dc.contributor.authorKhaniyev, Tahir-
dc.date.accessioned2023-04-16T10:01:15Z-
dc.date.available2023-04-16T10:01:15Z-
dc.date.issued2023-
dc.identifier.issn1300-0098-
dc.identifier.issn1303-6149-
dc.identifier.urihttps://doi.org/10.55730/1300-0098.3363-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/10346-
dc.description.abstractIn this study, a random walk process (X (t)) with normally distributed interference of chance is considered. In the literature, this process has been shown to be ergodic and the limit form of the ergodic distribution has been found. Here, unlike previous studies, the moments of the X (t) process are investigated. Although studies investigating the moment problem for various stochastic processes (such as renewal-reward processes) exist in the literature, it has not been considered for random walk processes, as it requires the use of new mathematical tools. Therefore, in this study, firstly, the exact formulas for the first four moments of the ergodic distribution of the X (t) process, which is a modification of the random walk process, are found. Due to the extremely complex mathematical structure of the exact formulas, in the second part of the study, three-term asymptotic expansions are attained for these moments. Based on the asymptotic expansions, simple and useful approximation formulas, for the moments of the process X (t) are proposed. In order to show that the approximate formulas are close enough to the exact formulas, a special example is given at the end of the study and the accuracy of the approximate formulas is examined on this example.en_US
dc.language.isoenen_US
dc.publisherScientific And Technological Research Council Turkeyen_US
dc.relation.ispartofTurkish Journal of Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectRandom walken_US
dc.subjectdiscrete interference of chanceen_US
dc.subjectergodic distributionen_US
dc.subjectapproximation formulasen_US
dc.subjectnormal distributionen_US
dc.subjectWeak-Convergence Theoremen_US
dc.subjectRenewal-Reward Processen_US
dc.subjectGaussian Distributionen_US
dc.subjectErgodic Distributionen_US
dc.titleApproximation Results for the Moments of Random Walk With Normally Distributed Interference of Chanceen_US
dc.typeArticleen_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume47en_US
dc.identifier.issue1en_US
dc.identifier.startpage333en_US
dc.identifier.endpage350en_US
dc.identifier.wosWOS:000923127700021en_US
dc.identifier.scopus2-s2.0-85147701373en_US
dc.institutionauthor-
dc.identifier.doi10.55730/1300-0098.3363-
dc.authorscopusid57188571645-
dc.authorscopusid57211683090-
dc.authorscopusid7801652544-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.trdizinid1160058en_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.4. Department of Industrial Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

1
checked on Oct 5, 2024

Page view(s)

86
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.