Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/10339
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArın, Efe-
dc.contributor.authorKutlu, Mucahid-
dc.date.accessioned2023-04-16T10:01:14Z-
dc.date.available2023-04-16T10:01:14Z-
dc.date.issued2023-
dc.identifier.issn1556-6013-
dc.identifier.issn1556-6021-
dc.identifier.urihttps://doi.org/10.1109/TIFS.2023.3254429-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/10339-
dc.description.abstractWhile social bots can be used for various good causes, they can also be utilized to manipulate people and spread malware. Therefore, it is crucial to detect bots running on social media platforms. However, social bots are increasingly successful in creating human-like messages with the recent developments in artificial intelligence. Thus, we need more sophisticated solutions to detect them. In this study, we propose a novel deep learning architecture in which three long short-term memory (LSTM) models and a fully connected layer are utilized to capture complex social media activity of humans and bots. Since our architecture involves many components connected at different levels, we explore three learning schemes to train each component effectively. In our extensive experiments, we analyze the impact of each component of our architecture on classification accuracy using four different datasets. Furthermore, we show that our proposed architecture outperforms all baselines used in our experiments.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK); ARDEB 3501 [120E514]en_US
dc.description.sponsorshipThis work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK), ARDEB 3501, under Grant 120E514. The associate editor coordinating the review of this manuscript and approving it for publication was Prof. Chia-Mu Yu.en_US
dc.language.isoenen_US
dc.publisherIeee-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIeee Transactions on Information Forensics and Securityen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSocial bot detectionen_US
dc.subjectonline account classificationen_US
dc.subjectNetworksen_US
dc.titleDeep Learning Based Social Bot Detection on Twitteren_US
dc.typeArticleen_US
dc.departmentTOBB ETÜen_US
dc.identifier.volume18en_US
dc.identifier.startpage1763en_US
dc.identifier.endpage1772en_US
dc.identifier.wosWOS:000954026700001en_US
dc.identifier.scopus2-s2.0-85149895404en_US
dc.institutionauthor-
dc.identifier.doi10.1109/TIFS.2023.3254429-
dc.authorscopusid57205421446-
dc.authorscopusid35299304300-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.3. Department of Computer Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

15
checked on Oct 5, 2024

Page view(s)

112
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.