Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/10310
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNassehi, Farhad-
dc.contributor.authorSönmez, İrem-
dc.contributor.authorSabanoğlu, Beril-
dc.contributor.authorYukselen, Elifnur-
dc.contributor.authorÖzaydın, Hilal Meva-
dc.contributor.authorEroğul, Osman-
dc.date.accessioned2023-04-16T10:00:14Z-
dc.date.available2023-04-16T10:00:14Z-
dc.date.issued2022-
dc.identifier.isbn978-1-6654-5432-2-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO56568.2022.9960152-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/10310-
dc.descriptionMedical Technologies Congress (TIPTEKNO) -- OCT 31-NOV 02, 2022 -- Antalya, TURKEYen_US
dc.description.abstractThis study proposes to experts a fast and highly successful algorithm for the diagnosis of ADHD disorder using EEG (Electroencephalogram) signals obtained during the Attention task, reducing their dependence on subjective evaluations. Accordingly, EEG signals obtained from 61 ADHD and 60 control participants were analyzed using nonlinear features (approximate entropy, Petrosian, and Lyapunov exponent). After feature extraction, the classification process was performed using support vector machine (SVM), and K-Nearest-Neighbor (KNN), and ensemble learning. In this study t-test based and location based feature selection methods were used. We used only features that were extracted from prefrontal and frontal regions. The highest accuracy that was reached in this study was 95.8%.en_US
dc.description.sponsorshipBiyomedikal Klinik Muhendisligi Dernegi,Izmir Ekonomi Univen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2022 Medical Technologies Congress (Tiptekno'22)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAttention Deficit Hyperactivity Disorderen_US
dc.subjectElectroencephalography signalsen_US
dc.subjectNon-linear Featuresen_US
dc.subjectEEGen_US
dc.subjectMachine Learningen_US
dc.titleDetection of Attention Deficit and Hyperactivity Disorder by Nonlinear Eeg Analysisen_US
dc.typeConference Objecten_US
dc.departmentTOBB ETÜen_US
dc.identifier.wosWOS:000903709700008en_US
dc.identifier.scopus2-s2.0-85144037687en_US
dc.institutionauthor-
dc.identifier.doi10.1109/TIPTEKNO56568.2022.9960152-
dc.authorscopusid57210944631-
dc.authorscopusid58018315300-
dc.authorscopusid58018538900-
dc.authorscopusid58018098500-
dc.authorscopusid58017216900-
dc.authorscopusid56247443100-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.2. Department of Biomedical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

72
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.