Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/10308
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGüven, Ali-
dc.contributor.authorÖzçelik, Ceren-
dc.contributor.authorSazak, D. Melih-
dc.date.accessioned2023-04-16T10:00:14Z-
dc.date.available2023-04-16T10:00:14Z-
dc.date.issued2022-
dc.identifier.isbn978-1-6654-6382-9-
dc.identifier.urihttps://doi.org/10.1109/AVSS56176.2022.9959473-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/10308-
dc.description18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) -- NOV 29-DEC 02, 2022 -- Madrid, SPAINen_US
dc.description.abstractBlind deblurring has been attracting increased attention. In real-life problems, high-resolution images are needed to process and the blurring function, point spread function (PSF), is mostly unknown, especially in the surveillance systems such as camera integrated payload drop with a parachute. The PSFs are dependent on their previous functions, so we perform the deblurring process faster with our proposed model by integrating a previously prepared deep learning method. Our system consists of four phases: (i) enhancing images with an existing deep learning method, (ii) obtaining PSFs, (iii) predicting the next PSFs with our model, and (iv) enhancing the images with the wiener filtering we developed. The number of PSFs to be estimated was experimentally found as the point at which the PSNR value began to decrease in the test images. Convolutional LSTM layers were used for our model which has been compared with other state-of-the-art models in terms of performance and running time.en_US
dc.description.sponsorshipIEEEen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2022 18th Ieee International Conference on Advanced Video and Signal Based Surveillance (Avss 2022)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectImageen_US
dc.subjectSuperresolutionen_US
dc.subjectRepresentationen_US
dc.titleAccelerated Blind Deblurring Method Via Video-Based Estimation in Next Point Spread Functions for Surveillanceen_US
dc.typeConference Objecten_US
dc.departmentTOBB ETÜen_US
dc.identifier.wosWOS:000896514200031en_US
dc.identifier.scopus2-s2.0-85143891745en_US
dc.institutionauthor-
dc.identifier.doi10.1109/AVSS56176.2022.9959473-
dc.authorscopusid57221818399-
dc.authorscopusid58003225600-
dc.authorscopusid58003225700-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

60
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.