Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/1020
Title: Anemone-Like Nanostructures for Non-Lithographic, Reproducible, Large-Area, and Ultra-Sensitive Sers Substrates
Authors: Dağlar, Bihter
Demirel, Gökçen Birlik
Khudiyev, Tural
Doğan, Tamer
Tobail, Osama
Altuntaş, Sevde
Büyükserin, Fatih
Bayındır, Mehmet
Keywords: nanoparticles
scattering
nanofibers
assemblies
fabrication
infiltration
surfaces
silver
nanotubes
enhanced raman-spectroscopy
Publisher: Royal Soc Chemistry
Source: Daglar, B., Demirel, G. B., Khudiyev, T., Dogan, T., Tobail, O., Altuntas, S., ... & Bayindir, M. (2014). Anemone-like nanostructures for non-lithographic, reproducible, large-area, and ultra-sensitive SERS substrates. Nanoscale, 6(21), 12710-12717.
Abstract: The melt-infiltration technique enables the fabrication of complex nanostructures for a wide range of applications in optics, electronics, biomaterials, and catalysis. Here, anemone-like nanostructures are produced for the first time under the surface/ interface principles of melt-infiltration as a non-lithographic method. Functionalized anodized aluminum oxide (AAO) membranes are used as templates to provide large-area production of nanostructures, and polycarbonate (PC) films are used as active phase materials. In order to understand formation dynamics of anemone-like structures finite element method (FEM) simulations are performed and it is found that wetting behaviour of the polymer is responsible for the formation of cavities at the caps of the structures. These nanostructures are examined in the surfaceenhanced- Raman-spectroscopy (SERS) experiment and they exhibit great potential in this field. Reproducible SERS signals are detected with relative standard deviations (RSDs) of 7.2-12.6% for about 10 000 individual spots. SERS measurements are demonstrated at low concentrations of Rhodamine 6G (R6G), even at the picomolar level, with an enhancement factor of similar to 10(11). This high enhancement factor is ascribed to the significant electric field enhancement at the cavities of nanostructures and nanogaps between them, which is supported by finite difference time-domain (FDTD) simulations. These novel nanostructured films can be further optimized to be used in chemical and plasmonic sensors and as a single molecule SERS detection platform.
URI: https://pubs.rsc.org/en/content/articlelanding/2014/NR/C4NR03909B#!divAbstract
https://hdl.handle.net/20.500.11851/1020
ISSN: 2040-3364
Appears in Collections:Biyomedikal Mühendisliği Bölümü / Department of Biomedical Engineering
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

SCOPUSTM   
Citations

17
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

20
checked on Dec 21, 2024

Page view(s)

224
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.